European Food Research and Technology

, Volume 236, Issue 3, pp 523–530 | Cite as

Non-isoflavone phytoestrogenic compound contents of various legumes

  • Nevzat Konar
Original Paper


Widely consumed legumes including chickpeas, red kidney beans, haricot beans, yellow lentils, red lentils and green lentils were analysed to determine the content of non-isoflavone phytoestrogenic compounds such as quercetin, rutin, apigenin, coumestrol and lignan (matairesinol and secoisolariciresinol). Methanolic extracts obtained by ultrasound-assisted extraction were analysed by the triple quadrupole LC–MS/MS. Red kidney beans were the best source of quercetin (603.2 ± 307.2 μg/kg) and rutin (73.4 ± 14.0 μg/kg). Apigenin and secoisolariciresinol contents were the highest in yellow lentils (18.5 ± 0.84 μg/kg) and haricot beans (451.9 ± 192.2 μg/kg), respectively. Coumestrol contents of haricot beans (18.5 ± 1.45 μg/kg) and red kidney beans (18.5 ± 1.26 μg/kg) were equal to each other, and these were determined as the highest coumestrol content values. The best sources of matairesinol occurred in green lentils (28.2 ± 0.18 μg/kg) and chickpeas (27.7 ± 1.83 μg/kg). Differences between contents of each sample of the same legume were significant and remarkable, especially for quercetin and secoisolariciresinol.


Legume Phytoestrogen Lignan Bioflavonoid Coumestrol 


  1. 1.
    Espin JC, Garcia-Conesa MT, Tomas-Barberan FA (2007) Nutraceuticals: facts and fiction. Phytochemistry 68:2908–3006CrossRefGoogle Scholar
  2. 2.
    Key PE, Finglas PM, Coldham N, Botting N, Oldfield MF, Wood R (2006) An international quality assurance scheme for the quantitation of daidzein and genistein in food, urine and plasma. Food Chem 96(2):261–272CrossRefGoogle Scholar
  3. 3.
    Adlercreutz H, Mazur W (1998) Overview of naturally occuring endocrine-active substances in human diet. In: Dunalf GE, Olin SS, Scimeca JA, Thomas JA (eds) Human diet and endocrine modulation. ILSI Press, Washington, DC, pp 134–285Google Scholar
  4. 4.
    Fritz KL, Seppanen CM, Kurzer MS, Csallany AS (2003) The in vivo antioxidant activity of soybean isoflavones in human subjects. Nutr Res 23:479–487CrossRefGoogle Scholar
  5. 5.
    Prakash D, Upadhyay G, Singh BN, Singh BN (2007) Antioxidant and free radical-scavenging activities of seeds and agri-wastes of some varieties of soybean (Glycine max). Food Chem 104(2):783–790CrossRefGoogle Scholar
  6. 6.
    Committee on Toxicity of Chemicals in Food (2003) Consumer products and the environment. Phytoestrogens and Health. Food Standards Agency, LondonGoogle Scholar
  7. 7.
    Gülçin İ, Elias R, Gepdinemen A (2006) Antioxidant activity of lignans from fringe tree (Chionanthus virginicus L.). Eur Food Res Technol 223:759–767CrossRefGoogle Scholar
  8. 8.
    Liu RH (2007) Whole grain phytochemicals and health. J Cereal Sci 46(3):207–219CrossRefGoogle Scholar
  9. 9.
    Schwartz H, Sontag G, Plumb J (2009) Inventory of phytoestrogen databases. Food Chem 113:736–747CrossRefGoogle Scholar
  10. 10.
    Antignac JP, Gaudin-Hirret I, Naegeli H, Cariou R, Elliot C, Le Bizec B (2009) Multi functional sample preparation procedure for measuring phytoestrogens in milk, cereals and baby food by liquid-chromatography tandem mass spectrometry with subsequent determination of their estrogenic activity using transcriptomic assay. Anal Chim Acta 637:55–63CrossRefGoogle Scholar
  11. 11.
    Bacaloni A, Cavaliere C, Faberi A, Foglia P, Samperi R, Lagana A (2005) Determination of isoflavones and coumestrol in river water and domestic wastewater sewage treatment plants. Anal Chim Acta 531(2):229–237CrossRefGoogle Scholar
  12. 12.
    Kirihata Y, Kawarabayashi T, Imasishi S, Sugimoto M, Kume SI (2008) Coumestrol decreases intestinal alkaline phosphatase activity in post-delivery mice but does not affect vitamin D receptor and calcium channels in post-delivery and neonatal mice. J Reprod Dev 54(1):35–41CrossRefGoogle Scholar
  13. 13.
    Hong YH, Wang SC, Hsu C, Lin BF, Kuo YH, Huang CJ (2011) Phytoestrogenic compounds in alfalfa sprout (Medicago sativa) beyond coumestrol. J Agric Food Chem 59(1):131–137CrossRefGoogle Scholar
  14. 14.
    Sun JS, Li YY, Liu MH, Sheu SY (2007) Effects of coumestrol on neonatal and adult mice osteoblasts activities. J Biomed Mater Res A 81(1):214–223Google Scholar
  15. 15.
    Kuiper GGJM, Lemmen JG, Carlsson BO, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139:4252–4263CrossRefGoogle Scholar
  16. 16.
    Moon HJ, Seak JH, Kim SS, Rhee GS, Lee RD, Yang JY, Chae SY, Kim SH, Kim JY, Chung JY, Kim JM, Chung SY (2009) Lactational coumestrol exposure increases ovarian apoptosis in adult rats. Arch Toxicol 83:601–608CrossRefGoogle Scholar
  17. 17.
    Ndebele K, Graham B, Tchouwou PB (2010) Estrogenic activity of coumestrol, DDT, and TCDD in human cervical cancer cells. Int J Environ Res Public Health 7:2045–2056CrossRefGoogle Scholar
  18. 18.
    Hanske L, Loh G, Sczesny S, Blaut M, Braune A (2009) The bioavailability of apigenin-7-glucoside is influenced by human intestinal microbiota in rats. J Nutr 139:1095–1102CrossRefGoogle Scholar
  19. 19.
    Rezai-Zadeh K, Erhart J, Bai Y, Sanberg PR, Bickford P, Tan J, Shytle RD (2008) Apigenin and luteolin modulate microglial activation via inhibition of STATI-induced CD 40 expression. J Neuroinflammation 5:41–51CrossRefGoogle Scholar
  20. 20.
    Sampson L, Rimm E, Hollman PC, de Vries JH, Katan MB (2002) Flavonol and flavone intakes in US health professionals. J Am Diet Assoc 102:1414–1420CrossRefGoogle Scholar
  21. 21.
    Franzen CA, Amargo E, Todorovic V (2009) The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signalling mechanism. Cancer Prev Res 2(9):830–841CrossRefGoogle Scholar
  22. 22.
    Siddique YH, Beg T, Afzal M (2008) Antigenotoxic effect of apigenin aganist anti-cancerous drugs. Toxicol In Vitro 22:625–631CrossRefGoogle Scholar
  23. 23.
    Miyoshi N, Naniwa K, Yamada T, Osawa T, Nakamura Y (2007) Dietary flavonoid apigenin is a potential inducer of intracellular oxidative stress: The role in the interruptive apoptotic signal. Arch Biochem Biophys 466:274–282CrossRefGoogle Scholar
  24. 24.
    Patel D, Shukla S, Gupta S (2007) Apigenin and cancer chemo prevention: progress, potential and promise. Int J Oncol 30:233–245Google Scholar
  25. 25.
    Zhao M, Ma U, Zhu HY, Zhang XH, Du ZY, Xu YJ (2011) Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc 37 and Hsp 90. Mol Cancer 10:104–118CrossRefGoogle Scholar
  26. 26.
    Aalinekel R, Bindukumar B, Reynolds JL, Sykes DE, Mahajan SD, Chadha KC, Schwartz JA (2008) The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90. Prostate 68:1773–1789CrossRefGoogle Scholar
  27. 27.
    Murakami A, Ashida H, Terao J (2008) Multitargeted cancer prevention by quercetin. Cancer Lett 269:315–325CrossRefGoogle Scholar
  28. 28.
    Boots AW, Haenen GRMM, Bast A (2008) Health effects of quercetin from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337CrossRefGoogle Scholar
  29. 29.
    Havsteen B (1983) Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol 32:1141–1148CrossRefGoogle Scholar
  30. 30.
    Middleton EJ, Kandaswamic C (1986) The impact of plant flavonoids on mammalian biology: implication for immunity, inflammation and cancer. In: Harborne JB (ed) The flavonoids: advances in research since. Chapman & Hall, London, pp 619–652Google Scholar
  31. 31.
    Moon YJ, Wang L, DiCenzo R, Morris ME (2008) Quercetin pharmacokinetics in humans. Biopharm Drug Dispos 29:205–217CrossRefGoogle Scholar
  32. 32.
    Morota YJ, Terao J (2003) Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Arch Biochem Biophys 417:12–17CrossRefGoogle Scholar
  33. 33.
    Gülçin İ (2006) Antioxidant activity of food constituents: an overview. Arch Toxicol 86:345–391CrossRefGoogle Scholar
  34. 34.
    Kalogeropoulos N, Chiou A, Ioannou M, Karathanos VT, Hassapidou M, Andrikopoulus NK (2010) Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the mediterranean countries. Food Chem 121:682–690CrossRefGoogle Scholar
  35. 35.
    Kim J, Hong S, Jung W, Yu C, Ma K, Gwag J, Chung I (2007) Comparison of isoflavones composition in seed, embryo, cotyledon and seed coat of cooked-with-rice and vegetable soybean (Glycine max L.) varieties. Food Chem 102:738–744CrossRefGoogle Scholar
  36. 36.
    Konar N, Poyrazoğlu ES, Demir K, Artık N (2012) Determination of conjugated and free isoflavones in some legumes by LC–MS/MS. J Food Compos Anal 25(2):173–178CrossRefGoogle Scholar
  37. 37.
    Konar N, Poyrazoglu ES, Demir K, Artık N (2012) Effect of different sample preparation methods on isoflavone, lignan, coumestan, and flavonoid contents of various vegetables determined by triple quadrupole LC-MS/MS. J Food Compos Anal 26(1–2):26–35CrossRefGoogle Scholar
  38. 38.
    Truswell AS (2002) Cereal grains and coronary heart disease. Eur J Clin Nutr 56:1–14CrossRefGoogle Scholar
  39. 39.
    Demirbaş A (2005) β-Glucan and mineral nutrient contents of cereals grown in Turkey. Food Chem 90:737–777Google Scholar
  40. 40.
    Giannakoula AE, Ilias IF, Maksimovic JJD, Maksimovic VM, Zivanovic BD (2012) The effects of plant growth regulators or growth yield, and phenolic profile of lentil plants. J Food Compos Anal 28:46–53CrossRefGoogle Scholar
  41. 41.
    Puri M, Sharma D, Barrow CJ (2012) Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol 30(1):37–44CrossRefGoogle Scholar
  42. 42.
    Wu Q, Wang M, Simon SJE (2004) Analytical methods to determine phytoestrogenic compounds. J Chromatogr B 812:325–355Google Scholar
  43. 43.
    Mazur W, Duke JA, Wahala K, Raskku S, Adlercreutz H (1998) Isoflavonoids and lignans in legumes: nutritional and health aspects in humans. Nutr Biochem 9:193–200CrossRefGoogle Scholar
  44. 44.
    Franke A, Custer LJ, Cerna CM, Narala K (1995) Rapid HPLC analysis of dietary phytoestrogens from legumes and human urine. Proc Soc Exp Biol Med 208:18–26Google Scholar
  45. 45.
    Oomah B, Patras A, Rawson A, Singh N, Compos-Vega R (2011) In: Tiwari BK, Gowen A, McKenna B (eds) Pulse foods. Academic Press, LondonGoogle Scholar
  46. 46.
    Kuhnle GGC, Dell’Aquila C, Aspinall SM, Runswick SA, Joosen AMCP, Mulligan AA, Bingham SA (2009) Phytoestrogen content of fruits and vegetables commonly consumed in the UK based on LC–MS and 13C-labelled standards. Food Chem 116:542–554CrossRefGoogle Scholar
  47. 47.
    Clarke DB, Bailey V, Lloyd AS (2008) Determination of phytoestrogens in soy based dietary supplements by LC–MS/MS. Food Addit Contam 25(5):534–547CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Ankara University Food Safety InstituteDiskapi, AnkaraTurkey

Personalised recommendations