Abstract
Bacterial diversity of Tibetan kefir grains from different areas in China was investigated by culture-independent metagenomic methods, and comprehensive taxonomic profiling was done. Eleven genera and their proportions were found in all the 4 samples, and they were Lactococcus (40.93–72.02 %), Lactobacillus (10.50–47.89 %), Acetobacter (4.50–14.15 %), Shewanella (1.73–7.58 %), Leuconostoc (0.64–0.84 %), Pseudomonas (0.07–0.63 %), Streptococcus (0.02–0.22 %), Acinetobacter (0.05–0.12 %), Pelomonas (0–0.01 %), Dysgonomonas (0–0.01 %), and Weissella (0–0.01 %). Shewanella, Acinetobacter, Pelomonas, Dysgonomonas, Weissella, and Pseudomonas were the first time found in Tibetan kefir grains. α-Diversity analysis showed that they varied in bacterial richness and diversity while β-diversity showed that the variation of genera composition among sampling sites was small. Principal component analysis showed that Lactobacillus, Lactococcus, and Acetobacter were the main genera which caused the diversity. This study provided theoretical basis for further investigation and application of Tibetan kefir grains.





References
Diniz RO, Garla LK, Schneedorf JM, Carvalho JCT (2003) Study of anti-inflammatory activity of Tibetan mushroom, a symbiotic culture of bacteria and fungi encapsulated into a polysaccharide matrix. Pharmacol Res 47(1):49–52
Vinderola CG, Duarte J, Thangavel D, Perdigon G, Farnworth E, Matar C (2005) Immunomodulating capacity of kefir. J Dairy Res 72(2):195–202. doi:10.1017/S0022029905000828
Silva KR, Rodrigues SA, Xavier L, Lima AS (2009) Antimicrobial activity of broth fermented with kefir grains. Appl Biochem Biotech 152(2):316–325. doi:10.1007/s12010-008-8303-3
Rizk S, Maalouf K, Baydoun E (2009) The antiproliferative effect of kefir cell-free fraction on HuT-102 malignant T Lymphocytes. Clin Lymphoma Myelom 9:S198–S203. doi:10.3816/Clm.2009.S.012
Kesmen Z, Kacmaz N (2011) Determination of Lactic Microflora of kefir grains and kefir beverage by using culture-dependent and culture-independent methods. J Food Sci 76(5):M276–M283. doi:10.1111/j.1750-3841.2011.02191.x
De Antoni G, Zago M, Vasek O, Giraffa G, Carminati D, Marco MB, Reinheimer J, Suarez V (2010) Lactobacillus plantarum bacteriophages isolated from kefir grains: phenotypic and molecular characterization. J Dairy Res 77(1):7–12. doi:10.1017/S0022029909990203
Magalhães KT, Pereira GVD, Dias DR, Schwan RF (2010) Microbial communities and chemical changes during fermentation of sugary Brazilian kefir. World J Microb Biotechnol 26(7):1241–1250. doi:10.1007/s11274-009-0294-x
Chen HC, Wang SY, Chen MJ (2008) Microbiological study of lactic acid bacteria in kefir grains by culture-dependent and culture-independent methods. Food Microbiol 3:492–501
Plessas S, Alexopoulos A, Bekatorou A, Mantzourani I, Koutinas AA, Bezirtzoglou E (2011) Examination of freshness degradation of sourdough bread made with kefir through monitoring the aroma volatile composition during storage. Food Chem 124(2):627–633. doi:10.1016/j.foodchem.2010.06.086
Leite AM, Mayo B, Rachid CT, Peixoto RS, Silva JT, Paschoalin VM, Delgado S (2012) Assessment of the microbial diversity of Brazilian kefir grains by PCR-DGGE and pyrosequencing analysis. Food Microbiol 31(2):215–221. doi:10.1016/j.fm.2012.03.011
Liu Y, Wang J, Qu X, Yu C, Sun J, Xia H (2005) Study of the microorganism in the xizang linggu fungus. China Dairy Ind 33(9):35–39
Bik EM, Long CD, Armitage GC, Loomer P, Emerson J, Mongodin EF, Nelson KE, Gill SR, Fraser-Liggett CM, Relman DA (2010) Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J 4(8):962–974. doi:10.1038/ismej.2010.30
Zhou JZ, Liu XL, Jiang HH, Dong MS (2009) Analysis of the microflora in Tibetan kefir grains using denaturing gradient gel electrophoresis. Food Microbiol 26(8):770–775. doi:10.1016/J.Fm.2009.04.009
Furrie E (2006) A molecular revolution in the study of intestinal microflora. Gut 55(2):141–143. doi:10.1136/gut.2005.081695
Vallaeys T, Topp E, Muyzer G, Macheret V, Laguerre G, Rigaud A, Soulas G (1997) Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiol Ecol 24(3):279–285
Sekiguchi H, Tomioka N, Nakahara T, Uchiyama H (2001) A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis. Biotechnol Lett 23(15):1205–1208
Dobson A, O’Sullivan O, Cotter PD, Ross P, Hill C (2011) High-throughput sequence-based analysis of the bacterial composition of kefir and an associated kefir grain. FEMS Microbiol Lett 320(1):56–62. doi:10.1111/j.1574-6968.2011.02290.x
Zhu H, Qu F, Zhu LH (1993) Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res 21(22):5279–5280
Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103(32):12115–12120. doi:10.1073/pnas.0605127103
Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18(11):1851–1858. doi:10.1101/gr.078212.108
Li P, Kupfer KC, Davies CJ, Burbee D, Evans GA, Garner HR (1997) PRIMO: a primer design program that applies base quality statistics for automated large-scale DNA sequencing. Genomics 40(3):476–485. doi:10.1006/geno.1996.4560
Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967. doi:10.1093/bioinformatics/btp336
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb 75(23):7537–7541. doi:10.1128/Aem.01541-09
Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLos Genet 4(11). doi:10.1371/journal.pgen.1000255
Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12(7):1889–1898. doi:10.1111/j.1462-2920.2010.02193.x
Kemp PF, Aller JY (2004) Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol 47(2):161–177. doi:10.1016/S0168-6496(03)00257-5
Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71(3):1501–1506. doi:10.1128/AEM.71.3.1501-1506.2005
Shannon CE (1948) A mathematical theory of communication. At&T Tech J 27(3):379–423
Amp F, Miambi E (2000) Cluster analysis, richness and biodiversity indexes derived from denaturing gradient gel electrophoresis fingerprints of bacterial communities demonstrate that traditional maize fermentations are driven by the transformation process. Int J Food Microbiol 60(1):91–97
Simpson EH (1949) Measurement of diversity. Nature 163(4148):688
Tuomisto H, Ruokolainen K (2006) Analyzing or explaining beta diversity? Understanding the targets of different methods of analysis. Ecology 87(11):2697–2708
Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21(2):213–251
Saeed I, Tang SL, Halgamuge SK (2012) Unsupervised discovery of microbial population structure within metagenomes using nucleotide base composition. Nucleic Acids Res 40(5):e34. doi:10.1093/nar/gkr1204
Dessau RB, Pipper CB (2008) “R” project for statistical computing. Ugeskr Laeger 170(5):328–330
Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6(11):e280. doi:10.1371/journal.pbio.0060280
Magalhães KT, Dragone G, Pereira GVD, Oliveira JM, Domingues L, Teixeira JA, Silva JBAE, Schwan RF (2011) Comparative study of the biochemical changes and volatile compound formations during the production of novel whey-based kefir beverages and traditional milk kefir. Food Chem 126(1):249–253. doi:10.1016/j.foodchem.2010.11.012
Sieuwerts S, de Bok FAM, Hugenholtz J, Vlieg JETV (2008) Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl Environ Microb 74(16):4997–5007. doi:10.1128/Aem.00113-08
Graciela LG, Analía GA, Graciela LDA (2010) Microbial interactions in kefir: a natural probiotic drink. In: Fernanda Mozzi RRR, Graciela M Vignolo (ed) Biotechnology of lactic acid bacteria: novel applications. Wiley, Iowa, pp 327–340
Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLoS Comput Biol 2(7):e92. doi:10.1371/journal.pcbi.0020092
Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond B Biol Sci 345(1311):101–118. doi:10.1098/rstb.1994.0091
Miguel MGDP, Cardoso PG, Lago LD, Schwan RF (2010) Diversity of bacteria present in milk kefir grains using culture-dependent and culture-independent methods. Food Res Int 43(5):1523–1528. doi:10.1016/j.foodres.2010.04.031
Plessas S, Alexopoulos A, Voidarou C, Stavropoulou E, Bezirtzoglou E (2011) Microbial ecology and quality assurance in food fermentation systems. The case of kefir grains application. Anaerobe 17(6):483–485. doi:10.1016/j.anaerobe.2011.03.014
Gao J, Gu FY, Abdellaa NH, Ruan H, He GQ (2012) Investigation on culturable microflora in Tibetan kefir grains from different areas of China. J Food Sci 77(8):425–433. doi:10.1111/j.1750-3841.2012.02805.x
Acknowledgments
The authors are thankful to those who sent the kefir samples for this research, and this work was supported by National Technology Support Project of China (2012BAD37B01) and Zhejiang Provincial Natural Science Foundation (Y2111237).
Conflict of interest
None.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gao, J., Gu, F., He, J. et al. Metagenome analysis of bacterial diversity in Tibetan kefir grains. Eur Food Res Technol 236, 549–556 (2013). https://doi.org/10.1007/s00217-013-1912-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00217-013-1912-2