Skip to main content

Advertisement

Log in

An alkaline protease from Kocuria kristinae F7: properties and characterization of its hydrolysates from soy protein

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

An alkaline serine protease (SF1) from Kocuria kristinae F7 was purified. The molecular mass of the SF1 protease was estimated to be 57 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). The N-terminal amino acid sequence of the first 14 amino acids of the SF1 protease showed low homology with bacterial proteases, suggesting that the enzyme had not been described previously. The SF1 protease exhibited maximal activity at pH 9.0 and 60 °C. The activity of the SF1 protease was enhanced by the presence of Ca2+ and Mg2+ ions. It showed high stability in the presence of NaCl and ethanol. Reverse-phase high-performance liquid chromatography (RP-HPLC) analyses indicated that soybean protein isolates treated with the SF1 protease generated four principal new hydrophilic peptides. Mass spectrometry analyses indicate that the distribution of molecular weight of these peptides was from 0.705 to 1.305 kDa. Hydrolysis of soybean protein isolates with the SF1 protease increased the level of total free amino acids, essential amino acids and flavor amino acids. The SF1 protease may decrease the bitterness of soy protein hydrolysates. The results showed that the SF1 protease of Kocuria kristinae F7 appears to be good candidate enzyme for potential application in acceleration of fermented soybean food ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee Seung-Joo, Ahn Bomi (2009) Food Chem 114:600–609

    Article  CAS  Google Scholar 

  2. Dae YK, James WDIII, Hyun JK, Sunmin P (2010) Nutr Res 30:1–13

    Google Scholar 

  3. Catherine T, Agnieszka K, Sandra H, Emilie C, Mireille Y (2002) Anton Leeuwenhoek 82:271–278

    Article  Google Scholar 

  4. Anjani K, Kailasapathy K, Phillips M (2007) Int Dairy J 17:79–86

    Article  CAS  Google Scholar 

  5. Broncano JM, Timón ML, Parra V, Andrés AI, Petrón MJ (2011) Food Res Int 44:2655–2659

    Article  CAS  Google Scholar 

  6. Kilcawley KN, Nongonierma AB, Hannon JA, Doolan IA, Wilkinson MG (2012) Int Dairy J 26:50–57

    Article  CAS  Google Scholar 

  7. Ling G, Kyeung HC, Jong-Hoon L (2011) Food Microbiol 28:101–113

    Article  Google Scholar 

  8. Kalliopi R, Luca C (2006) Int J Food Microbiol 108:255–267

    Article  Google Scholar 

  9. Cécile C, Frédérique D, Céline D, Marion F (2007) Yves Le Frileux RDC, Marie-Christine M. Syst Appl Microbiol 30:547–560

    Article  Google Scholar 

  10. María C, García F, José ML, Ana P, Inmaculada F, Javier C (2007) Food Microbiol 24:52–58

    Article  Google Scholar 

  11. Lisa Q, Orla O, Tom P, Beresford R, Paul R, Gerald F, Fitzgerald PDC (2011) Int J Food Microbiol 150:81–94

    Article  Google Scholar 

  12. Miralles MC, Flores J, Perez-Martinez G (1996) Food Microbiol 13:227–236

    Article  CAS  Google Scholar 

  13. Annalisa C, Francesco V, Fidel T, Yolanda S (2006) Int J Food Microbiol 112:223–229

    Article  Google Scholar 

  14. Bonomo MG, Ricciardi A, Zotta T, Sico MA, Salzano G (2009) Meat Sci 83:15–23

    Article  CAS  Google Scholar 

  15. Tatiana C, Bruno DM, Bart D (2012) Peptides 33:187–196

    Article  Google Scholar 

  16. Kembhavi AA, Kulkarni A, Pant A (1993) Appl Biochem Biotech 38:83–92

    Article  CAS  Google Scholar 

  17. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  18. Nout MJR, Bakshi D, Sarkar PK (1998) Food Control 9:357–362

    Article  Google Scholar 

  19. Jeyaram K, Mohendro Singh W, Premarani T, Ranjita Devi A, Selina Chanu K, Talukdar NC, Rohinikumar Singh M (2008) Int J Food Microbiol 122:259–268

    Google Scholar 

  20. Katekan D, Arunee A, Ekachai C, Richard AF (2011) Food Chem 125:342–347

    Article  Google Scholar 

  21. Ruiz-Ramírez J, Arnau J, Serra X, Gou P (2006) Meat Sci 72:185–194

    Article  Google Scholar 

  22. Brewer MS (2000) In: Robinson RK, Batt CA, Patel PD (eds) Encyclopedia of food microbiology. Academic Press, Urbana, pp 1723–1728

    Google Scholar 

  23. Chiou RY-Y (1999) J Food Sci 64:918–920

    Google Scholar 

  24. Chiou RY-Y, Cheng S-L (2001) J Agric Food Chem 49:3656–3660

    Google Scholar 

  25. Tunga R, Banerjee R, Bhattacharya BC (1999) Bioprocess Eng 20:485–489

    Article  CAS  Google Scholar 

  26. Laura A, Marisa SG, Graciela SG (2008) Food Chem 111:976–982

    Article  Google Scholar 

  27. Smit G, Smit BA, Engels WJM (2005) FEMS Microbiol Rev 29:591–610

    Article  CAS  Google Scholar 

  28. Nishiwaki T, Hayashi K (2001) Biosci Biotechnol Biochem 65:424–427

    Article  CAS  Google Scholar 

  29. Nishiwaki T, Yoshimizu S, Furuta M, Hayashi K (2002) J Biosci Bioeng 93:60–63

    CAS  Google Scholar 

  30. Mee-Ra R, Eun-Young K (2011) Food Chem 127:1210–1215

    Article  Google Scholar 

  31. Lioe HN, Wade K, Aoki T, Yasuda M (2007) Food Chem 100:1669–1677

    Article  CAS  Google Scholar 

  32. Kato H, Rhue MR, Nishimura T (1989) In: Teranishi R, Buttery RG, Shahidi F (eds) Flavor chemistry trends and developments. Am. Chem. Soc., Washington, DC, pp 158–174

  33. Schoenberger C, Krottenthaler M, Back W (2002) MBAA 39:210–217

    CAS  Google Scholar 

  34. Lee MYL, Park SY, Jung KO, Park KY, Kim SD (2005) J Food Sci 70:191–194

    Article  Google Scholar 

  35. Cho MJ, Unblesbay N, Hsie FH, Clark AD (2004) J Agr Food Chem 52:5895–5901

    Article  CAS  Google Scholar 

  36. Qin L, Ding X (2007) J Food Biochem 31:230–251

    Article  CAS  Google Scholar 

  37. Calderón de la Barca AM, Ruiz-Salazar RA, Jara-Marini ME (2000) J Food Sci 65:246–253

  38. Saito K, Jin DH, Ogawa T, Muramoto K, Hatakeyama E, Yasuhara T (2003) J Agr Food Chem 51:3668–3674

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (31000808), the Special Fund of the National Postdoctoral Science Foundation of China (No. 4, 201104409), the young academic backbone support project of Heilongjiang province (201104383), the Postdoctoral Science Foundation of Heilongjiang province (LBH-Z10233) and the Doctor Scientific Research Start-up Fund of Northeast Agricultural University (2010RCB60).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Z., Chen, X., Li, Jj. et al. An alkaline protease from Kocuria kristinae F7: properties and characterization of its hydrolysates from soy protein. Eur Food Res Technol 236, 293–301 (2013). https://doi.org/10.1007/s00217-012-1890-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-012-1890-9

Keywords

Navigation