Advertisement

European Food Research and Technology

, Volume 236, Issue 1, pp 171–180 | Cite as

Authentication of gadoids from highly processed products susceptible to include species mixtures by means of DNA sequencing methods

  • Fátima C. Lago
  • Juan M. Vieites
  • Montserrat EspiñeiraEmail author
Original Paper

Abstract

Economic importance of gadoids such as fishing resource, and their conservation status, necessitates the development of techniques that allow unequivocal authentication of products made from them. Amplification of a fragment of mitochondrial cytochrome b (cyt b) marker and subsequent phylogenetic analysis were carried out to authenticate these products and assure their correct labeling. Also, SNP analysis that allows detection of species mixtures of Gadus genus was developed. For this, two fragments of the cyt b gene were amplified and sequenced, one of 464 bp and another internal fragment to this of 263 bp to allow the authentication of gadoid species in highly processed products. Obtained sequences were aligned and analyzed in order to assess the presence of informative variable positions and a maximum of 14 SNP were identified and selected. These allow detection and identification of species mixtures belonging to this genus. The developed methodologies were validated and applied to 25 commercial samples. The main novelty of this work lies in the fact that is the only work that allows the detection of species mixtures of the Gadus genus and is the only one that allows the authentication of highly processed products up to date. Furthermore, this methodology allows identifying more of 15 species of gadoids and can be applied to all kinds of seafood products. Therefore, this molecular tool can be applied in questions related to check the fulfillment of labeling regulations for seafood products, verify the correct traceability in commercial trade and for fisheries control.

Keywords

Gadoids Genetic identification FINS SNP Species mixtures Highly processed products authentication 

Notes

Acknowledgments

We thank Maritza Barriga (Instituto Tecnológico Pesquero del Perú (ITP)), Jonbjorn Palson (Marine research Institute, Iceland), Kathryn E. Elmer and Axel Meyer (University of Konstanz, Germany), Steve Hay (Marine Science Scotland), James Markham and Ann Gorman (Lake Erie Fisheries Unit Dunkirk, New York), and Dawn Roje (School of Aquatic and Fishery Sciences, University of Washington), Peter Smith (National Institute of Water and Atmospheric Research, New Zealand), Jose Antonio González Pérez (International Conference on Computing and Mission, Spain) and Barbara Cardazzo (Dipartimento di Sanità Pubblica, Patologia Comparata e Igiene Veterinaria. Legnaro, Italy) for providing some of the samples included in this work.

References

  1. 1.
    Rose GA (2004) Reconciling overfishing and climate change with stock dynamics of Atlantic cod (Gadus morhua) over 500 years. Can J Fish Aquat Sci 61:1553–1557CrossRefGoogle Scholar
  2. 2.
    Council Regulation (EC) No 104/2000 of 17 December 1999 on the common organisation of the markets in fishery and aquaculture products (2000)Google Scholar
  3. 3.
    Commission Regulation (EC) No 2065/2001 of 22 October 2001 laying down detailed rules for the application of Council Regulation (EC) No 104/2000 as regards informing consumers about fishery and aquaculture products (2001)Google Scholar
  4. 4.
    Akasaki T, Yanagimoto T, Yamakami K, Tomonaga H, Sato S (2006) Species identification and PCR-RFLP analysis of cytochrome b gene in cod fish (order Gadiformes) products. J Food Sci 71:190–195CrossRefGoogle Scholar
  5. 5.
    Aranishi F, Okimoto T, Izumi S (2005) Identification of gadoid species (Pisces, Gadidae) by PCR-RFLP analysis. J Appl Genet 46(1):69–73Google Scholar
  6. 6.
    Comi G, Lacumin L, Rantsiou K, Cantoni C, Cocolin L (2005) Molecular methods for the differentiation of species used in production of cod-fish can detect commercial frauds. Food Control 16:37–42CrossRefGoogle Scholar
  7. 7.
    Di Finizio A, Guerriero G, Russo G, Ciarcia G (2007) Identification of gadoid species (Pisces, Gadidae) by sequencing and PCR–RFLP analysis of mitochondrial 12S and 16S rRNA gene fragments. Eur Food Res Technol 225(3):337–344CrossRefGoogle Scholar
  8. 8.
    Perez J, Garcia-Vazquez E (2004) Genetic identification of nine hake species for detection of commercial fraud. J Food Prot 67:2792–2796Google Scholar
  9. 9.
    Pérez M, Presa P (2008) Validation of tRNA-Glu-cytochrome b key for the molecular identification of twelve hake species (Merluccius spp.) and Atlantic cod (Gadus morhua) using PCR-RFLPs, FINS and BLAST. J Agric Food Chem 56(22):10865–10871CrossRefGoogle Scholar
  10. 10.
    Wolf C, Burgener M, Hubner P, Luthy J (2000) PCR-RFLP analysis of mitochondrial DNA: differentiation of fish species. Lebenson Wiss Technol 33:144–150Google Scholar
  11. 11.
    Herrero B, Madriñán M, Vieites JM, Espiñeira M (2010) Authentication of Atlantic cod (Gadus morhua) using Real -Time PCR. J Agric Food Chem 58(8):4794–4799CrossRefGoogle Scholar
  12. 12.
    Taylor MI, Fox C, Rico I, Rico C (2002) Species specific TaqMan probes for simultaneous identification of (Gadus morhua L.) haddock (Melanogrammus aeglefinus L.) and whiting (Merlangius merlangus L.). Mol Ecol Notes 2:599–601CrossRefGoogle Scholar
  13. 13.
    Bakke I, Johansen SD (2005) Molecular phylogenetics of Gadidae and related Gadiformes based on mitochondrial DNA sequences. Mar Biotechnol 7:61–69CrossRefGoogle Scholar
  14. 14.
    Morán P, Garcia-Vazquez E (2006) Identification of highly prized commercial fish using a PCR-based methodology. Biochem Mol Biol Educ 34(2):121–124CrossRefGoogle Scholar
  15. 15.
    Teletchea F, Laudet V, Hanni C (2006) Phylogeny of the Gadidae (sensu Svetovidav, 1948) based on their morphology and two mitochondrial genes. Mol Phylogenet Evol 38:189–199CrossRefGoogle Scholar
  16. 16.
    Hubert S, Higgins B, Borza T, Bowman S (2010) Development of a SNP resource and a genetic linkage map for Atlantic cod (Gadus morhua). BMC Genomics 11:191CrossRefGoogle Scholar
  17. 17.
    Moen T, Delghandi M, Wesmajervi MS, Westgaard JI, Fjalestad KT (2009) A SNP/microsatellite genetic linkage map of the Atlantic cod (Gadus morhua). Anim Genet 40(6):993–996CrossRefGoogle Scholar
  18. 18.
    Wesmajervi MS, Delghandi M, Westgard JI (2007) Genotyping of Atlantic cod (Gadus morhua L.) using five microsatellite markers and a population specific single nucleotide polymorphism. Aquaculture 272:S317–S318CrossRefGoogle Scholar
  19. 19.
    Carr SM, Marshall HD (1991) Detection of intraspecific DNA-sequence variation in the mitochondrial cytochrome-b gene of Atlantic cod (Gadus morhua) by the polymerase chain-reaction. Can J Fish Aquat Sci 48(1):48–52CrossRefGoogle Scholar
  20. 20.
    Carr SM, Marshall HD (2008) Intraspecific phylogeographic genomics from multiple complete mtDNA Genomes in Atlantic cod (Gadus morhua): origins of the “Codmother,” transatlantic vicariance and midglacial population expansion. Genetics 180(1):381–389CrossRefGoogle Scholar
  21. 21.
    Moen T, Hayes B, Nilsen F, Delghandi M, Fjalestad KT, Fevolden SE, Berg PR, Lien S (2008) Identification and characterisation of novel SNP markers in Atlantic cod: evidence for directional selection. BMB Genetics 9:18CrossRefGoogle Scholar
  22. 22.
    Nielsen EE, Hemmer-Hansen J, Poulsen NA, Loeschcke V, Moen T, Johansen T, Mittelholzer C, Taranger GL, Ogden R, Carvalho GR (2009) Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua). BMC Evol Biol 9:276CrossRefGoogle Scholar
  23. 23.
    O’Leary DB, Coughlan J, McCarthy TV, Cross TF (2006) Application of a rapid method of SNP analysis (glycosylase mediated polymorphism detection) to mtDNA and nuclear DNA of cod Gadus morhua. J Fish Biol 69(A):145–153CrossRefGoogle Scholar
  24. 24.
    Delghandi M, Stenvik J, Moen T, Wesmajervi MS, Westgaard JI, Fjalestad KT, Kettunen A, Nielsen F (2007) Development and characterisation of microsatellite and single nucleotide polymorphism markers in Atlantic cod (Gadus morhua L.). Aquaculture 272:S250–S250CrossRefGoogle Scholar
  25. 25.
    Hubert S, Tarrant Bussey J, Higgins B, Curtis BA, Bowman S (2009) Development of single nucleotide polymorphism markers for Atlantic cod (Gadus morhua) using expressed sequences. Aquaculture 296(1–2):7–14CrossRefGoogle Scholar
  26. 26.
    Wirgin I, Kovach AI, Maceda L (2007) Stock identification of Atlantic cod in US waters using microsatellite and single nucleotide polymorphism DNA analyses. Trans Am Fish Soc 136(2):375–391CrossRefGoogle Scholar
  27. 27.
    Lago FC, Herrero B, Vieites JM, Espiñeira M (2011) FINS methodology to identification of Sardines and related species in canned products and detection of mixture by means of SNP Analysis Systems. Eur Food Res Technol 232(6):1077–1086CrossRefGoogle Scholar
  28. 28.
    FAO (1990) Species Catalogue vol. 10 Gadiform fishes of the world an annotated and illustrated catalogue of cods, hakes, grenadiers and other food and agriculture organization of the United Nations (Order Gadiformes)Google Scholar
  29. 29.
    Herrero B, Vieites JM, Espiñeira M (2011) Duplex real-time PCR for authentication of anglerfish species. Eur Food Res Technol 233:817–823CrossRefGoogle Scholar
  30. 30.
    Burgener M (1997) Molecular species differentiation of fish and mammals. Ph.D. Thesis, University of Bern, SwitzerlandGoogle Scholar
  31. 31.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  32. 32.
    Mc Carthy C (1996) Chromas version 1.45. School of Health science, Griffifth University, Gold Coast Campus, Queensland, AustraliaGoogle Scholar
  33. 33.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402CrossRefGoogle Scholar
  34. 34.
    Bartlett SE, Davidson WS (1992) FINS (Forensically Informative Nucleotide Sequencing): a procedure for identifying the animal origin of biological specimens. Biotechniques 12(3):408–411Google Scholar
  35. 35.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefGoogle Scholar
  36. 36.
    Saitou N, Nei M (1987) The Neighbor-Joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425Google Scholar
  37. 37.
    Espiñeira M, Gonzalez-Lavín N, Vieites JM, Santaclara FJ (2009) Development of a method for the identification of scombroid and common substitute species in seafood products by FINS. Food Chem 117:698–704CrossRefGoogle Scholar
  38. 38.
    Espiñeira M, Vieites J, Santaclara FJ (2009) Development of a genetic method for the identification of Salmon, trout and bream in seafood products by means of PCR-RFLP and FINS Methodologies. Eur Food Res Technol 229:785–793CrossRefGoogle Scholar
  39. 39.
    Espiñeira M, Vieites JM, Santaclara FJ (2010) Species authentication of octopus, cuttlefish, bobtail and bottle squids (Families Octopodidae, Sepiidae and Sepiolidae) by FINS methodology in seafoods. Food Chem 121:527–532CrossRefGoogle Scholar
  40. 40.
    Lago FC, Vieites JM, Espineira M (2012) Authentication of the most important species of freshwater eels by means of FINS. Eur Food Res Technol 234(4):689–694CrossRefGoogle Scholar
  41. 41.
    Santaclara FJ, Espineira M, Vieites JM (2007) Genetic identification of squids (Families Ommastrephidae and Loliginidae) by PCR-RFLP and FINS methodologies. J Agric Food Chem 55(24):9913–9920CrossRefGoogle Scholar
  42. 42.
    Tamura K, Nei M (1993) Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial-DNA in Humans and Chimpanzees. Mol Biol Evol 10(3):512–526Google Scholar
  43. 43.
    Hillis DM, Bull JJ (1993) An empirical-test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42(2):182–192Google Scholar
  44. 44.
    Calo-Mata P, Sotelo CG, Pérez-Martín RI, Rehbein H, Hold GH, Russell VJ, Pryde S, Quinteiro J, Rey-Méndez M, Rosa C, Santos AT (2003) Identification of gadoid fish species using DNA-based techniques. Eur Food Res Technol 217(3):259–264CrossRefGoogle Scholar
  45. 45.
    Carr SM, Kivlichan DS, Pepin P, Crutcher DC (1999) Molecular systematics of gadid fishes: implications for the biogeographic origins of Pacific species. Can J Zool 77:19–26CrossRefGoogle Scholar
  46. 46.
    Coulson MW, Marshall HD, Carr SM (2006) Mitochondrial genomics of gadine fishes: implications for taxonomy and biogeographic origins from whole-genome data sets. Genome 49(9):1115–1130CrossRefGoogle Scholar
  47. 47.
    Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villabianca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci 86:6196–6200CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fátima C. Lago
    • 1
  • Juan M. Vieites
    • 1
  • Montserrat Espiñeira
    • 1
    Email author
  1. 1.Research Department of Genomics and Proteomics Applied to the Marine and Food IndustryANFACO-CECOPESCA36310 Vigo, PontevedraSpain

Personalised recommendations