A review of analytical methods measuring lipid oxidation status in foods: a challenging task

Abstract

Lipid oxidation analysis in food samples is a relevant topic since the compounds generated in the process are related to undesirable sensory and biological effects. Proper measurement of lipid oxidation remains a challenging task since the process is complex and depends on the type of lipid substrate, the oxidation agents and the environmental factors. A great variety of methodologies have been developed and implemented so far, for determining both primary and secondary oxidation products. Most common methods and classical procedures are described, including peroxide value, TBARS analysis and chromatography. Some other methodologies such as chemiluminescence, fluorescence emission, Raman spectroscopy, infrared spectroscopy or magnetic resonance provide interesting and promising results. Therefore, attention should be paid to these alternative techniques in the area of food lipid oxidation analysis.

This is a preview of subscription content, access via your institution.

Abbreviations

MDA:

Malondialdehyde

PV:

Peroxides value

AOAC:

Association of Official Analytical Chemists

UV–Vis:

Ultraviolet–visible

TEP:

1,1,3,3-tetraethoxypropane

TMP:

1,1,3,3-tetramethoxypropane

TBA:

Thiobarbituric acid

TBARS:

Thiobarbituric acid reactive substances

PAV:

Para-anisidine value

HPLC:

High-performance liquid chromatography

ESI:

Electrospray ionization

MS:

Mass spectrometry

GC:

Gas chromatography

DNPH:

2,4-dinitrophenylhydrazine

FID:

Flame ionization detector

SOPs:

Sterol oxidation products

LDI-TOF:

Laser desorption/ionization time of flight

HS:

Headspace

SDE:

Simultaneous distillation extraction

RPDE:

Reduced pressure distillation extraction

SHS:

Static headspace

DHS:

Dynamic headspace

SPME:

Solid phase microextraction

CL:

Chemiluminescence

IR:

Infrared

FTIR:

Fourier transform infrared

SERS:

Surface-enhanced Raman spectroscopy

NMR:

Nuclear magnetic resonance

EPR:

Electron paramagnetic resonance

HPSEC:

High-performance size exclusion chromatography

References

  1. 1.

    Marquez-Ruiz G, Holgado F, Garcia-Martinez MC, Dobarganes MC, Garcia-Martinez MC (2007) A direct and fast method to monitor lipid oxidation progress in model fatty acid methyl esters by high-performance size-exclusion chromatography. J Chromatogr 1165(1–2):122–127

    CAS  Google Scholar 

  2. 2.

    Kanner J (2007) Dietary advanced lipid oxidation endproducts are risk factors to human health. Mol Nutr Food Res 51(9):1094–1101

    CAS  Article  Google Scholar 

  3. 3.

    Choe E, Min D (2006) Chemistry and reactions of reactive oxygen species in foods. Crit Rev Food Sci Nutr 46(1):1–22

    CAS  Article  Google Scholar 

  4. 4.

    Min D, Boff J (2002) Chemistry and reaction of singlet oxygen in foods. Compr Rev Food Sci Food Saf 1(2):58–72

    CAS  Article  Google Scholar 

  5. 5.

    Silvagni A, Franco L, Bagno A, Rastrelli F (2010) Thermoinduced lipid oxidation of a culinary oil: a kinetic study of the oxidation products by magnetic resonance spectroscopies. J Phys Chem A 114(37):10059–10065

    CAS  Article  Google Scholar 

  6. 6.

    Eymard S, Baron CP, Jacobsen C (2009) Oxidation of lipid and protein in horse mackerel (Trachurus trachurus) mince and washed minces during processing and storage. Food Chem 114(1):57–65

    CAS  Article  Google Scholar 

  7. 7.

    Richards M, Dettmann M (2003) Comparative analysis of different hemoglobins: autoxidation, reaction with peroxide, and lipid oxidation. J Agric Food Chem 51(13):3886–3891

    CAS  Article  Google Scholar 

  8. 8.

    Chen BC, Han A, McClements DJ, Decker EA (2010) Physical structures in soybean oil and their impact on lipid oxidation. J Agric Food Chem 58(22):11993–11999

    CAS  Article  Google Scholar 

  9. 9.

    Maqsood S, Benjakul S, Balange A (2012) Effect of tannic acid and kiam wood extract on lipid oxidation and textural properties of fish emulsion sausages during refrigerated storage. Food Chem 130(2):408–416

    CAS  Article  Google Scholar 

  10. 10.

    Mun Y (2011) Effects of green tea catechin on the lipid oxidation, volatile compound formation, and losses of retinol and alpha-tocopherol in whole milk during light illumination as compared with ascorbic acid. Food Sci Biotechnol 20(5):1425–1434

    Article  CAS  Google Scholar 

  11. 11.

    AOAC (2000) Peroxide value of oils and fats 965.33.12. Official methods of analysis of AOAC international, 17th edn. Maryland, USA

  12. 12.

    Sun Y, Wang W, Chen H, Li C (2011) Autoxidation of unsaturated lipids in food emulsion. Crit Rev Food Sci Nutr 51(5):453–466

    CAS  Article  Google Scholar 

  13. 13.

    Kamal-Eldin A, Min D (2010) Lipid oxidation pathways, Vol 2. AOCS Press, USA

  14. 14.

    Shantha N, Decker E (1994) Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. J AOAC Int 77(2):421–424

    CAS  Google Scholar 

  15. 15.

    Bou R, Codony R, Tres A, Decker E, Guardicila F, Guardiola F (2008) Determination of hydroperoxides in foods and biological samples by the ferrous oxidation-xylenol orange method: a review of the factors that influence the method’s performance. Anal Biochem 377(1):1–15

    CAS  Article  Google Scholar 

  16. 16.

    Verardo V, Ferioli F, Riciputi Y, Lafelice G, Marconi E, Caboni MF (2009) Evaluation of lipid oxidation in spaghetti pasta enriched with long chain n-3 polyunsaturated fatty acids under different storage conditions. Food Chem 114(2):472–477

    CAS  Article  Google Scholar 

  17. 17.

    Chotimarkorn C, Silalai N, Chaitanawisuit N (2009) Changes and deterioration of lipid in farmed spotted babylon snail (Babylonia areolata) muscle during iced storage. Food Sci Technol Int 15(5):427–433

    CAS  Article  Google Scholar 

  18. 18.

    Sorensen ADM, Nielsen NS, Hyldig G, Jacobsen C (2010) Influence of emulsifier type on lipid oxidation in fish oil-enriched light mayonnaise. Eur J Lipid Sci Technol 112(9):1012–1023

    Article  CAS  Google Scholar 

  19. 19.

    Nielsen N, Timm-Heinrich M, Jacobsen C (2003) Comparison of wet-chemical methods for determination of lipid hydroperoxides. J Food Lipids 10(1):35–50

    CAS  Article  Google Scholar 

  20. 20.

    Nuchi C, Guardiola F, Bou R, Bondioli P, Della Bella L, Codony R (2009) Assessment of the levels of degradation in fat co-and byproducts for feed uses and their relationships with some lipid composition parameters. J Agric Food Chem 57(5):1952–1959

    CAS  Article  Google Scholar 

  21. 21.

    Watanabe Y, Hashimoto K, Omori A, Uda Y, Nomura M (2010) Suppressive ability of defatted rice bran against lipid oxidation in cookies containing iron. Biosci Biotech Bioch 74(2):262–265

    CAS  Article  Google Scholar 

  22. 22.

    Bloomfield M (1999) The spectrophotometric determination of hydroperoxide and peroxide in a lipid pharmaceutical product by flow injection analysis. Analyst 124(12):1865–1871

    CAS  Article  Google Scholar 

  23. 23.

    Zeb A, Murkovic M (2010) Characterization of the effects of beta-carotene on the thermal oxidation of triacylglycerols using HPLC-ESI-MS. Eur J Lipid Sci Technol 112(11):1218–1228

    CAS  Article  Google Scholar 

  24. 24.

    Gotoh N, Miyake S, Takei H, Sasaki K, Okuda S (2011) Simple method for measuring the peroxide value in a colored lipid. Food Anal Methods 4(4):525–530

    Article  Google Scholar 

  25. 25.

    Sugino K (1999) Simultaneous determination of different classes of lipid hydroperoxides by high-performance liquid chromatography with post column detection by a ferrous xylenol orange reagent. Biosci Biotechnol Biochem 63:773–775

    CAS  Article  Google Scholar 

  26. 26.

    Saynajoki S, Sundberg S, Soupas L, Lampi A, Piironen V (2003) Determination of stigmasterol primary oxidation products by high-performance liquid chromatography. Food Chem 80(3):415–421

    CAS  Article  Google Scholar 

  27. 27.

    Lagarda MJ, Manez JG, Manglano P, Farre R (2003) Lipid hydroperoxides determination in milk-based infant formulae by gas chromatography. Eur J Lipid Sci Technol 105(7):339–345

    CAS  Article  Google Scholar 

  28. 28.

    Laguerre M (2007) Evaluation of the ability of antioxidants to counteract lipid oxidation: existing methods, new trends and challenges. Prog Lipid Res 46(5):244–282

    CAS  Article  Google Scholar 

  29. 29.

    Shahidi F, Zhong Y (2005) Lipid oxidation: Measurement methods. In: Shahidi F (ed) Bailey’s industrial oil and fat products. Wiley, New York

    Google Scholar 

  30. 30.

    Frankel EN (1998) Methods to determine extent of oxidation. In: Frankel EN (ed) Lipid oxidation. The Oily Press, USA

    Google Scholar 

  31. 31.

    Maggio R, Valli E, Bendini A, Toschi T (2011) A spectroscopic and chemometric study of virgin olive oils subjected to thermal stress. Food Chem 127(1):216–221

    CAS  Article  Google Scholar 

  32. 32.

    Karoui I, Dhifi W, Ben Jemia M, Marzouk B (2011) Thermal stability of corn oil flavoured with Thymus capitatus under heating and deep-frying conditions. J Sci Food Agric 91(5):927–933

    CAS  Article  Google Scholar 

  33. 33.

    Morales A, Dobarganes C, Marquez Ruiz G, Velasco J (2010) Quantitation of hydroperoxy-, keto- and hydroxydienes during oxidation of FAMEs from high-linoleic and high-oleic sunflower oils. J Am Oil Chem Soc 87(11):1271–1279

    CAS  Article  Google Scholar 

  34. 34.

    Wanasundura UN, Shahidi F, Jablonski CR (1995) Comparison of standard and NMR methodologies for assessment of oxidative stability of canola and soybean oils. Food Chem 52(3):249–253

    Article  Google Scholar 

  35. 35.

    Fernandez J, Perez-Alvarez J, Fernandez-Lopez J (1997) Thiobarbituric acid test for monitoring lipid oxidation in meat. Food Chem 59(3):345–353

    CAS  Article  Google Scholar 

  36. 36.

    Berasategi I, Barriuso B, Ansorena D, Astiasarán I (2012) Stability of avocado oil during heating: comparative study to olive oil. Food Chem 132(1):439–446

    CAS  Article  Google Scholar 

  37. 37.

    Peiretti P, Medana C, Visentin S, Giancotti V, Zunino V (2011) Determination of carnosine, anserine, homocarnosine, pentosidine and thiobarbituric acid reactive substances contents in meat from different animal species. Food Chem 126(4):1939–1947

    CAS  Article  Google Scholar 

  38. 38.

    Jung S, Han B, Nam K, Ahn D, Lee J (2011) Effect of dietary supplementation of gallic acid and linoleic acid mixture or their synthetic salt on egg quality. Food Chem 129(3):822–829

    CAS  Article  Google Scholar 

  39. 39.

    Jongberg S, Skov S, Torngren M, Skibsted L, Lund M (2011) Effect of white grape extract and modified atmosphere packaging on lipid and protein oxidation in chill stored beef patties. Food Chem 128(2):276–283

    CAS  Article  Google Scholar 

  40. 40.

    Leygonie C, Britz TJ, Hoffman LC (2011) Protein and lipid oxidative stability of fresh ostrich M. Iliofibularis packaged under different modified atmospheric packaging conditions. Food Chem 127(4):1659–1667

    CAS  Article  Google Scholar 

  41. 41.

    Salih A, Smith D, Price J, Dawson L (1987) Modified extraction 2-thiobarbituric acid method for measuring lipid oxidation in poultry. Poult Sci 66(9):1483–1488

    CAS  Article  Google Scholar 

  42. 42.

    Pignoli G, Bou R, Rodriguez-Estrada MT, Decker EA (2009) Suitability of saturated aldehydes as lipid oxidation markers in washed turkey meat. Meat Sci 83(3):412–416

    CAS  Article  Google Scholar 

  43. 43.

    Stalikas C, Konidari C (2001) Analysis of malondialdehyde in biological matrices by capillary gas chromatography with electron-capture detection and mass spectrometry. Anal Biochem 290(1):108–115

    CAS  Article  Google Scholar 

  44. 44.

    Jardine D, Antolovich M, Prenzler P, Robards K (2002) Liquid chromatography-mass spectrometry (LC-MS) investigation of the thiobarbituric acid reactive substances (TBARS) reaction. J Agric Food Chem 50(6):1720–1724

    CAS  Article  Google Scholar 

  45. 45.

    de las Heras A, Schoch A, Gibis M, Fischer A (2003) Comparison of methods for determining malondialdehyde in dry sausage by HPLC and the classic TBA test. Eur Food Res Technol 217(2):180–184

    Article  CAS  Google Scholar 

  46. 46.

    Cesa S (2004) Malondialdehyde contents in infant milk formulas. J Agric Food Chem 52(7):2119–2122

    CAS  Article  Google Scholar 

  47. 47.

    Seljeskog E, Hervig T, Mansoor M (2006) A novel HPLC method for the measurement of thiobarbituric acid reactive substances (TBARS). A comparison with a commercially available kit. Clin Biochem 39(9):947–954

    CAS  Article  Google Scholar 

  48. 48.

    Mendes R, Cardoso C, Pestana C (2009) Measurement of malondialdehyde in fish: a comparison study between HPLC methods and the traditional spectrophotometric test. Food Chem 112(4):1038–1045

    CAS  Article  Google Scholar 

  49. 49.

    Mateos R, Lecumberri E, Ramos S, Goya L, Bravo L (2005) Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress—application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. J Chromatogr B 827(1):76–82

    CAS  Article  Google Scholar 

  50. 50.

    Ichinose T, Miller M, Shibamoto T (1989) Gas-chromatographic analysis of free and bound malonaldehyde in rat-liver homogenates. Lipids 24(10):895–898

    CAS  Article  Google Scholar 

  51. 51.

    Marcincak S, Sokol J, Turek P, Popelka P, Nagy J (2006) Determination of malondialdehyde in pork meat using solid phase extraction and HPLC. Chemické listy 100(7):528–532

    CAS  Google Scholar 

  52. 52.

    Tompkins C, Perkins EG (1999) The evaluation of frying oils with the p-anisidine value. J Am Oil Chem Soc 76(8):945–947

    CAS  Article  Google Scholar 

  53. 53.

    Poulli K, Mousdis G, Georgious C (2009) Monitoring olive oil oxidation under thermal and UV stress through synchronous fluorescence spectroscopy and classical assays. Food Chem 117(3):499–503

    CAS  Article  Google Scholar 

  54. 54.

    Rovellini P, Cortesi N (2004) Oxidative status of extra virgin olive oils: HPLC evaluation. Ital J Food Sci 16(3):333–342

    CAS  Google Scholar 

  55. 55.

    Aguirre M, Marmesat S, Mendez M, Dobarganes M (2010) Application of high-temperature gas chromatography to the analysis of used frying fats. Grasas Aceites 61(2):197–202

    CAS  Article  Google Scholar 

  56. 56.

    Schiller J, Suss R, Petkovic M, Arnold K (2002) Thermal stressing of unsaturated vegetable oils: effects analysed by MALDI-TOF mass spectrometry, H-1 and P-31 NMR spectroscopy. Eur Food Res Technol 215(4):282–286

    CAS  Article  Google Scholar 

  57. 57.

    Calvano C, Palmisano F, Zambonin C, Palmisano F, Zambonin C (2005) Laser desorption/ionization time-of-flight mass spectrometry of triacylglycerols in oils. Rapid Commun Mass Sp 19(10):1315–1320

    CAS  Article  Google Scholar 

  58. 58.

    Simas R, Catharino R, Cunha IBS, Cabral E, Barrera Arellano D, Eberlin M et al (2010) Instantaneous characterization of vegetable oils via TAG and FFA profiles by easy ambient sonic-spray ionization mass spectrometry. Analyst 135(4):738–744

    CAS  Article  Google Scholar 

  59. 59.

    Otaegui Arrazola A, Menendez Carreno M, Ansorena D, Astiasaran I, Menndez-Carreo M, Astiasarn I (2010) Oxysterols: a world to explore. Food Chem Toxicol 48(12):3289–3303

    CAS  Article  Google Scholar 

  60. 60.

    Guardiola F, Bou R, Boatella J, Codony R (2004) Analysis of sterol oxidation products in foods. J AOAC Int 87(2):441–466

    CAS  Google Scholar 

  61. 61.

    Busch T, King A (2009) Artifact generation and monitoring in analysis of cholesterol oxide products. Anal Biochem 388(1):1–14

    CAS  Article  Google Scholar 

  62. 62.

    Johnsson L, Dutta P (2006) Determination of phytosterol oxides in some food products by using an optimized transesterification method. Food Chem 97(4):606–613

    CAS  Article  Google Scholar 

  63. 63.

    Menendez-Carreño M, Ansorena D, Astiasarán I (2008) Stability of sterols in phytosterol-enriched milk under different heating conditions. J Agric Food Chem 56(21):9997–10002

    Google Scholar 

  64. 64.

    Ubhayasekera SJKA, Dutta PC (2009) Sterols and oxidized sterols in feed ingredients obtained from chemical and physical refining processes of fats and oils. J Am Oil Chem Soc 86(6):595–604

    CAS  Article  Google Scholar 

  65. 65.

    Derewiaka D, Obiedzinski M (2010) Cholesterol oxides content in selected animal products determined by GC-MS. Eur J Lipid Sci Technol 112(10):1130–1137

    CAS  Article  Google Scholar 

  66. 66.

    Xu GH, Sun JL, Liang YT, Yang C, Chen ZY (2011) Interaction of fatty acids with oxidation of cholesterol and beta-sitosterol. Food Chem 124(1):162–170

    CAS  Article  Google Scholar 

  67. 67.

    Clariana M, Diaz I, Sarraga C, Garcia Regueiro J (2011) Comparison of the determination of eight cholesterol oxides in dry-cured shoulder by GC-FID, GC-MS, and GC tandem mass spectrometry. Food Anal Method 4(4):465–474

    Article  Google Scholar 

  68. 68.

    Kemmo S, Ollilainen V, Lampi AM, Piironen V (2008) Liquid chromatography mass spectrometry for plant sterol oxide determination in complex mixtures. Eur Food Res Technol 226(6):1325–1334

    CAS  Article  Google Scholar 

  69. 69.

    Mazalli M, Bragagnolo N (2009) Increase of cholesterol oxidation and decrease of PUFA as a result of thermal processing and storage in eggs enriched with n-3 fatty acids. J Agric Food Chem 57(11):5028–5034

    CAS  Article  Google Scholar 

  70. 70.

    Matsunaga I, Hakamata H, Sadohara K, Kakiuchi K, Kusu F (2009) Determination of oxysterols in oxidatively modified low-density lipoprotein by semi-micro high-performance liquid chromatography with electrochemical detection. Anal Biochem 393(2):222–228

    CAS  Article  Google Scholar 

  71. 71.

    Cardenia V, Rodriguez-Estrada MT, Baldacci E, Savioli S, Lercker G (2012) Analysis of cholesterol oxidation products by fast gas chromatography/mass spectrometry. J Sep Sci 35(3):424–430

    CAS  Article  Google Scholar 

  72. 72.

    Varlet V, Prost C, Serot T (2007) Volatile aldehydes in smoked fish: analysis methods, occurrence and mechanisms of formation. Food Chem 105(4):1536–1556

    CAS  Article  Google Scholar 

  73. 73.

    Liu R, Xiong K, Dai X, Wang L, Liu Z, Xue W (2010) The effects of maturity on chilli pepper volatile components determined by SDE, GC-MS and HPLC. Nat Prod Commun 5(6):985–990

    CAS  Google Scholar 

  74. 74.

    Ning L, Fu-Ping Z, Hai-Tao C, Si-Yuan L, Chen G (2011) Identification of volatile components in Chinese Sinkiang fermented camel milk using SAFE, SDE, and HS-SPME-GC/MS. Food Chem 129(3):1242–1252

    Article  CAS  Google Scholar 

  75. 75.

    Ferhat M, Tigrine-Kordjani N, Chemat S, Meklati B, Chemat F (2007) Rapid extraction of volatile compounds using a new simultaneous microwave distillation: solvent extraction device. Chromatographia 65(3–4):217–222

    CAS  Article  Google Scholar 

  76. 76.

    Varlet V, Prost C, Serot T (2007) New procedure for the study of odour representativeness of aromatic extracts from smoked salmon. Food Chem 100(2):820–829

    CAS  Article  Google Scholar 

  77. 77.

    Joaquin HJF, Tolasa S, Oliveira ACM, Lee CM, Lee KH (2008) Effect of milk protein concentrate on lipid oxidation and formation of fishy volatiles in herring mince (Clupea harengus) during frozen storage. J Agric Food Chem 56(1):166–172

    CAS  Article  Google Scholar 

  78. 78.

    Vieira C, Fernandez-Diez A, Mateo J, Bodas R, Soto S, Manso T (2012) Effects of addition of different vegetable oils to lactating dairy ewes’ diet on meat quality characteristics of suckling lambs reared on the ewes’ milk. Meat Sci 91(3):277–283

    CAS  Article  Google Scholar 

  79. 79.

    Nielsen N, Jacobsen C (2009) Methods for reducing lipid oxidation in fish-oil-enriched energy bars. Int J Food Sci Technol 44(8):1536–1546

    CAS  Article  Google Scholar 

  80. 80.

    Haahr AM, Jacobsen C (2008) Emulsifier type, metal chelation and pH affect oxidative stability of n-3-enriched emulsions. Eur J Lipid Sci Technol 110(10):949–961

    CAS  Article  Google Scholar 

  81. 81.

    Iglesias J, Lois S, Medina I (2007) Development of a solid-phase microextraction method for determination of volatile oxidation compounds in fish oil emulsions. J Chromatogr 1163(1–2):277–287

    CAS  Google Scholar 

  82. 82.

    Iglesias J, Medina I (2008) Solid-phase microextraction method for the determination of volatile compounds associated to oxidation of fish muscle. J Chromatogr A 1192(1):9–16

    CAS  Article  Google Scholar 

  83. 83.

    Shu J, Sun D, Liu S (2010) Comparative performance of different methods used to collect tomato plant volatiles. Allelopath J 26(1):71–82

    Google Scholar 

  84. 84.

    Prosen H, Kokalj M, Janes D, Kreft S (2010) Comparison of isolation methods for the determination of buckwheat volatile compounds. Food Chem 121(1):298–306

    CAS  Article  Google Scholar 

  85. 85.

    Bilancia M, Caponio F, Sikorska E, Pasqualone A, Summo C (2007) Correlation of triacylglycerol oligopolymers and oxidised triacylglycerols to quality parameters in extra virgin olive oil during storage. Food Res Int 40(7):855–861

    CAS  Article  Google Scholar 

  86. 86.

    Gomes T, Caponio F, Durante V, Summo C, Paradiso VM (2012) The amounts of oxidized and oligopolymeric triacylglycerols in refined olive oil as a function of crude oil oxidative level. Food Sci Technol 45(2):186–190

    CAS  Article  Google Scholar 

  87. 87.

    Summo C, Caponio F, Paradiso V, Pasqualone A, Gomes T, Pasqualone A (2010) Vacuum-packed ripened sausages: evolution of oxidative and hydrolytic degradation of lipid fraction during long-term storage and influence on the sensory properties. Meat Sci 84(1):147–151

    CAS  Article  Google Scholar 

  88. 88.

    Caponio F, Summo C, Bilancia M, Paradiso V, Sikorska E (2011) High performance size-exclusion chromatography analysis of polar compounds applied to refined, mild deodorized, extra virgin olive oils and their blends: an approach to their differentiation. Food Sci Technol 44(8):1726–1730

    CAS  Article  Google Scholar 

  89. 89.

    Struijs K, Lampi A, Ollilainen V, Piironen V (2010) Dimer formation during the thermo-oxidation of stigmasterol. Eur Food Res Technol 231(6):853–863

    CAS  Article  Google Scholar 

  90. 90.

    Menendez-Carreno M, Ansorena D, Astiasaran I, Piironen V, Lampi A (2010) Determination of non-polar and mid-polar monomeric oxidation products of stigmasterol during thermo-oxidation. Food Chem 122(1):277–284

    CAS  Article  Google Scholar 

  91. 91.

    Rudzinska M, Przybylski R, Wasowicz E (2009) Products formed during thermo-oxidative degradation of phytosterols. J Am Oil Chem Soc 86(7):651–662

    CAS  Article  Google Scholar 

  92. 92.

    Rudzinska M, Przybylski R, Zhao Y, Curtis J (2010) Sitosterol thermo-oxidative degradation leads to the formation of dimers, trimers and oligomers: a study using combined size exclusion chromatography/mass spectrometry. Lipids 45(6):549–558

    CAS  Article  Google Scholar 

  93. 93.

    Navas M, Jimenez A (1996) Review of chemiluminescent methods in food analysis. Food Chem 55(1):7–15

    CAS  Article  Google Scholar 

  94. 94.

    Roginsky V, Lissi EA (2005) Review of methods to determine chain-breaking antioxidant activity in food. Food Chem 92(2):235–254

    CAS  Article  Google Scholar 

  95. 95.

    Robinson E, Maxwell S, Thorpe G (1997) An investigation of the antioxidant activity of black tea using enhanced chemiluminescence. Free Radic Res 26(3):291–302

    CAS  Article  Google Scholar 

  96. 96.

    Szterk A, Lewicki P (2010) A new chemiluminescence method for detecting lipid peroxides in vegetable oils. J Am Oil Chem Soc 87(4):361–367

    CAS  Article  Google Scholar 

  97. 97.

    Baj S, Krawczyk T, Staszewska K, Krawczyk T (2009) The influence of dioxygen on luminol chemiluminescence. Luminescence 24(5):348–354

    CAS  Article  Google Scholar 

  98. 98.

    Rolewski P, Siger A, Nogala-Kalucka M, Polewski K (2009) Chemiluminescent assay of lipid hydroperoxides quantification in emulsions of fatty acids and oils. Food Res Int 42(1):165–170

    CAS  Article  Google Scholar 

  99. 99.

    Bunting J, Gray D (2003) Development of a flow injection chemiluminescent assay for the quantification of lipid hydroperoxides. J Am Oil Chem Soc 80(10):951–955

    CAS  Article  Google Scholar 

  100. 100.

    Yang C, Mandal P, Han K, Fukushima M, Choi K (2010) Capsaicin and tocopherol in red pepper seed oil enhances the thermal oxidative stability during frying. J Food Sci Technol 47(2):162–165

    CAS  Article  Google Scholar 

  101. 101.

    Karoui R, Blecker C (2011) Fluorescence spectroscopy measurement for quality assessment of food systems-a review. Food Bioprocess Technol 4(3):364–386

    Article  Google Scholar 

  102. 102.

    Tironi V, Tomas M, Anon M (2009) Lipid and protein changes in chilled sea salmon (Pseudopercis semifasciata): effect of previous rosemary extract (Rossmarinus officinalis L.) application. Int J Food Sci Technol 44(6):1254–1262

    CAS  Article  Google Scholar 

  103. 103.

    Elmnasser N, Dalgalarrondo M, Orange N, Bakhrouf A, Haertle T, Federighi M et al (2008) Effect of pulsed-light treatment on milk proteins and lipids. J Agric Food Chem 56(6):1984–1991

    CAS  Article  Google Scholar 

  104. 104.

    Gatellier P, Sante-Lhoutellier V, Portanguen S, Kondjoyan A (2009) Use of meat fluorescence emission as a marker of oxidation promoted by cooking. Meat Sci 83(4):651–656

    CAS  Article  Google Scholar 

  105. 105.

    Schamberger G, Labuza T (2007) Effect of green tea flavonoids on Maillard browning in UHT milk. Food Sci Technol 40(8):1410–1417

    CAS  Article  Google Scholar 

  106. 106.

    Dalsgaard T, Sorensen J, Bakman M, Nebel C, Albrechtsen R (2011) Light-induced protein and lipid oxidation in low-fat cheeses: whey proteins as antioxidants. Dairy Sci Technol 91(2):171–183

    CAS  Article  Google Scholar 

  107. 107.

    Gatellier P, Gomez S, Gigaud V, Berri C, Le Bihan-Duval E, Sante-Lhoutellier V (2007) Use of a fluorescence front face technique for measurement of lipid oxidation during refrigerated storage of chicken meat. Meat Sci 76(3):543–547

    CAS  Article  Google Scholar 

  108. 108.

    Chelh I, Gatellier P, Sante-Lhoutellier V (2007) Characterisation of fluorescent Schiff bases formed during oxidation of pig myofibrils. Meat Sci 76(2):210–215

    CAS  Article  Google Scholar 

  109. 109.

    Naseri M, Rezaei M, Moieni S, Hosseini H, Eskandari S (2011) Effects of different filling media on the oxidation and lipid quality of canned silver carp (Hypophthalmichthys molitrix). Int J Food Sci Technol 46(6):1149–1156

    CAS  Article  Google Scholar 

  110. 110.

    Nguyen MV, Thorarinsdottir KA, Thorkelsson G, Gudmundsdottir A, Arason S (2012) Influences of potassium ferrocyanide on lipid oxidation of salted cod (Gadus morhua) during processing, storage and rehydration. Food Chem 131(4):1322–1331

    CAS  Article  Google Scholar 

  111. 111.

    Barrett A, Porter W, Marando G, Chinachoti P (2011) Effect of various antioxidants, antioxidant levels, and encapsulation on the stability of fish and flaxseed oils: assessment by fluorometric analysis. J Food Process Preserv 35(3):349–358

    CAS  Article  Google Scholar 

  112. 112.

    Andersen CM, Andersen LT, Hansen AM, Skibsted LH, Petersen MA (2008) Wavelength dependence of light-induced lipid oxidation and naturally occurring photosensitizers in cheese. J Agric Food Chem 56(5):1611–1618

    CAS  Article  Google Scholar 

  113. 113.

    Kong F, Singh RP (2011) Advances in instrumental methods to determine food quality deterioration. In: Kilkast D, Subramaniam P (eds) Food and beverage stability and shelf life, vol 1. Woodhead Publication Ltd, UK

  114. 114.

    Garcia-Gonzalez D, van de Voort FR (2009) A novel wire mesh “cell” for studying lipid oxidative processes by fourier transform infrared spectroscopy. Appl Spectrosc 63(5):518–527

    CAS  Article  Google Scholar 

  115. 115.

    Guillen M, Goicoechea E, Goicoechea E (2007) Detection of primary and secondary oxidation products by fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (NMR) in sunflower oil during storage. J Agric Food Chem 55(26):10729–10736

    CAS  Article  Google Scholar 

  116. 116.

    Christy A, Egeberg P, Ostensen E (2003) Simultaneous quantitative determination of isolated trans fatty acids and conjugated linoleic acids in oils and fats by chernometric analysis of the infrared profiles. Vib Spectrosc 33(1–2):37–48

    CAS  Article  Google Scholar 

  117. 117.

    Rusak D, Brown L, Martin S (2003) Classification of vegetable oils by principal component analysis of FTIR spectra. J Chem Educ 80(5):541–543

    CAS  Article  Google Scholar 

  118. 118.

    Yang H, Irudayaraj J, Paradkar M (2005) Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chem 93(1):25–32

    CAS  Article  Google Scholar 

  119. 119.

    Muik B, Lendl B, Molina Diaz A, Valcarcel M, Ayora Canada M, Ayora-Caada M (2007) Two-dimensional correlation spectroscopy and multivariate curve resolution for the study of lipid oxidation in edible oils monitored by FTIR and FT-Raman spectroscopy. Anal Chim Acta 593(1):54–67

    CAS  Article  Google Scholar 

  120. 120.

    Le Dreau Y, Dupuy N, Artaud J, Ollivier D, Kister J (2009) Infrared study of aging of edible oils by oxidative spectroscopic index and MCR-ALS chemometric method. Talanta 77(5):1748–1756

    Article  CAS  Google Scholar 

  121. 121.

    Wang H, Liu F, Yang L, Zu Y, Wang H (2011) Oxidative stability of fish oil supplemented with carnosic acid compared with synthetic antioxidants during long-term storage. Food Chem 128(1):93–99

    CAS  Article  Google Scholar 

  122. 122.

    Beltran A, Ramos M, Grane N, Martin ML, Garrigos MC (2011) Monitoring the oxidation of almond oils by HS-SPME-GC-MS and ATR-FTIR. Application of volatile compounds determination to cultivar authenticity. Food Chem 126(2):603–609

    CAS  Article  Google Scholar 

  123. 123.

    Moharam MA, Abbas LM (2010) A study on the effect of microwave heating on the properties of edible oils using FTIR spectroscopy. Afr J Microbiol Res 4(19):1921–1927

    CAS  Google Scholar 

  124. 124.

    Belhaj N, Arab Tehrany E, Linder M (2010) Oxidative kinetics of salmon oil in bulk and in nanoemulsion stabilized by marine lecithin. Process Biochem 45(2):187–195

    CAS  Article  Google Scholar 

  125. 125.

    Gimenez B, Gomez-Guillen MC, Perez Mateos M, Montero P, Marquez Ruiz G (2011) Evaluation of lipid oxidation in horse mackerel patties covered with borage-containing film during frozen storage. Food Chem 124(4):1393–1403

    CAS  Article  Google Scholar 

  126. 126.

    Rubio Diaz D, Santos A, Francis D, Rodriguez Saona L (2010) Carotenoid stability during production and storage of tomato juice made from tomatoes with diverse pigment profiles measured by infrared spectroscopy. J Agric Food Chem 58(15):8692–8698

    CAS  Article  Google Scholar 

  127. 127.

    Reid L, O’Donnell C (2006) Downey G (2003) Recent technological advances for the determination of food authenticity. Trends Food Sci Technol 17(7):344–353

    CAS  Article  Google Scholar 

  128. 128.

    Herrero A (2008) Raman spectroscopy a promising technique for quality assessment of meat and fish: a review. Food Chem 107(4):1642–1651

    CAS  Article  Google Scholar 

  129. 129.

    Korifi R, Le Dreau Y, Molinet J, Artaud J, Dupuy N (2011) Composition and authentication of virgin olive oil from French PDO regions by chemometric treatment of Raman spectra. J Raman Spectrosc 42(7):1540–1547

    CAS  Article  Google Scholar 

  130. 130.

    Guzman E, Baeten V, Fernandez Pierna J, Garcia Mesa J (2011) Application of low-resolution Raman spectroscopy for the analysis of oxidized olive oil. Food Control 22(12):2036–2040

    CAS  Article  Google Scholar 

  131. 131.

    Zhang D, Haputhanthri R, Ansar S, Vangala K, De Silva H, Sygula A et al (2010) Ultrasensitive detection of malondialdehyde with surface-enhanced Raman spectroscopy. Anal Bioanal Chem 398(7–8):3193–3201

    CAS  Article  Google Scholar 

  132. 132.

    Sarkardei S, Howell N (2007) The effects of freeze-drying and storage on the FT-Raman spectra of Atlantic mackerel (Scomber scombrus) and horse mackerel (Trachurus trachurus). Food Chem 103(1):62–70

    CAS  Article  Google Scholar 

  133. 133.

    Beattie JR, Bell S, Borgaard C, Fearon A, Moss B (2006) Prediction of adipose tissue composition using Raman spectroscopy: average properties and individual fatty acids. Lipids 41(3):287–294

    CAS  Article  Google Scholar 

  134. 134.

    Herrero AM, Carmona P, Ordonez JA, Cambero MI (2009) Raman spectroscopic study of electron-beam irradiated cold-smoked salmon. Food Res Int 42(1):216–220

    CAS  Article  Google Scholar 

  135. 135.

    Muik B, Lendl B, Molina Diaz A, Ayora Canada M, Lendl B, Molina-Daz A et al (2005) Direct monitoring of lipid oxidation in edible oils by fourier transform Raman spectroscopy. Chem Phys Lipids 134(2):173–182

    CAS  Article  Google Scholar 

  136. 136.

    El-Abassy R, Donfack P, Materny A (2009) Rapid determination of free fatty acid in extra virgin olive oil by Raman spectroscopy and multivariate analysis. J Am Oil Chem Soc 86(6):507–511

    CAS  Article  Google Scholar 

  137. 137.

    Kathirvel P, Ermakov IV, Gellermann W, Mai J, Richards MP (2008) Resonance Raman monitoring of lipid oxidation in muscle foods. Int J Food Sci Technol 43(11):2095–2099

    CAS  Article  Google Scholar 

  138. 138.

    Guillen MD, Ruiz A (2008) Monitoring of heat-induced degradation of edible oils by proton NMR. Eur J Lipid Sci Technol 110(1):52–60

    CAS  Article  Google Scholar 

  139. 139.

    El Hajjouji H, Merlina G, Pinelli E, Winterton P, Revel J, Hafidi M (2008) C-13 NMR study of the effect of aerobic treatment of olive mill wastewater (OMW) on its lipid-free content. J Hazard Mater 154(1–3):927–932

    Article  CAS  Google Scholar 

  140. 140.

    Dybvik A, Falch E, Rustad T (2008) Solid phase extraction as a tool to separate lipid classes and study deterioration of marine lipids. J Aquat Food Prod Technol 17(1):39–59

    CAS  Article  Google Scholar 

  141. 141.

    Tyl C, Brecker L, Wagner K (2008) H-1 NMR spectroscopy as tool to follow changes in the fatty acids of fish oils. Eur J Lipid Sci Technol 110(2):141–148

    CAS  Article  Google Scholar 

  142. 142.

    Colzato M, Scramin JA, Forato LA, Colnago LA (2011) 1H NMR investigation of oil oxidation in macadamia nuts coated with zein-based films. J Food Process Preserv 35(6):790–796

    CAS  Article  Google Scholar 

  143. 143.

    Scano P, Anedda R, Melis MP, Dessi MA, Lai A (2011) (1)H- and (13)C-NMR characterization of the molecular components of the lipid fraction of pecorino Sardo Cheese. J Am Oil Chem Soc 88(9):1305–1316

    CAS  Article  Google Scholar 

  144. 144.

    Guillen MD, Uriarte PS (2012) Monitoring by 1H nuclear magnetic resonance of the changes in the composition of virgin linseed oil heated at frying temperature. Comparison with the evolution of other edible oils. Food Control 28(1):59–68

    CAS  Article  Google Scholar 

  145. 145.

    Guillen MD, Uriarte PS (2012) Simultaneous control of the evolution of the percentage in weight of polar compounds, iodine value, acyl groups proportions and aldehydes concentrations in sunflower oil submitted to frying temperature in an industrial fryer. Food Control 24(1):50–56

    CAS  Article  Google Scholar 

  146. 146.

    Alonso-Salces RM, Holland MV, Guillou C (2011) 1H-NMR fingerprinting to evaluate the stability of olive oil. Food Control 22(12):2041–2046

    CAS  Article  Google Scholar 

  147. 147.

    Namal Senanayake SPJ, Shahidi F (2007) Measuring oxidative stability of structured lipids by proton nuclear magnetic resonance. J Food Lipids 14(3):217–231

    Article  Google Scholar 

  148. 148.

    de Oliveira Silva AC, Marsico E, Guimaraes C, Sloboda Cortez M (2011) Effect of gamma radiation on lipids by the TBARS and NMR. Braz Arch Biol Technol 54(6):1343–1348

    Article  CAS  Google Scholar 

  149. 149.

    Hatzakis E, Agiomyrgianaki A, Kostidis S, Dais P (2011) High-resolution NMR spectroscopy: an alternative fast tool for qualitative and quantitative analysis of diacylglycerol (DAG) oil. J Am Oil Chem Soc 88(11):1695–1708

    CAS  Article  Google Scholar 

  150. 150.

    Szterk A, Stefaniuk I, Waszkiewicz Robak B, Roszko M (2011) Oxidative stability of lipids by means of EPR spectroscopy and chemiluminescence. J Am Oil Chem Soc 88(5):611–618

    CAS  Article  Google Scholar 

  151. 151.

    Huvaere K, Nielsen J, Bakman M, Hammershoj M, Skibsted L, Hammershj M et al (2011) Antioxidant properties of green tea extract protect reduced fat soft cheese against oxidation induced by light exposure. J Agric Food Chem 59(16):8718–8723

    CAS  Article  Google Scholar 

  152. 152.

    Geoffroy M, Lambelet P, Richert P (2000) Role of hydroxyl radicals and singlet oxygen in the formation of primary radicals in unsaturated lipids: a solid state electron paramagnetic resonance study. J Agric Food Chem 48(4):974–978

    CAS  Article  Google Scholar 

  153. 153.

    Papadimitriou V, Sotiroudis TG, Xenakis A, Sofikiti N, Stavyiannoudaki V, Chaniotakis NA (2006) Oxidative stability and radical scavenging activity of extra virgin olive oils: an electron paramagnetic resonance spectroscopy study. Anal Chim Acta 573:453–458

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the ‘Programa Consolider-Ingenio 2010 CARNISENUSA CSD 2007-00016’, the ‘Proyecto AGL2008-01099/ALI’ (Ministerio de Ciencia e Innovación) and ‘Plan Investigador de la Universidad de Navarra’ (PIUNA) for their contribution to the financial support of this work. We also thank to Violeta Gómez Rodríguez for her contribution to English grammar correction. B. Barriuso is grateful to ‘Cátedra Tomás Pascual Sanz- Universidad de Navarra’ and to ‘Asociación de Amigos de la Universidad de Navarra’ for the grants received.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Diana Ansorena.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barriuso, B., Astiasarán, I. & Ansorena, D. A review of analytical methods measuring lipid oxidation status in foods: a challenging task. Eur Food Res Technol 236, 1–15 (2013). https://doi.org/10.1007/s00217-012-1866-9

Download citation

Keywords

  • Fat oxidation
  • Hydroperoxides
  • Secondary lipid oxidation products
  • TBA
  • Hexanal