Abstract
Nitrogen has a significant effect on the fermentation rate and the chemical composition of alcoholic beverages. Nitrogen deficiency during fermentation of Agave juice for mescal production can lead to slow fermentations and end-products with low aromatic compound variety. In this study, the effects of NH4Cl supplementation on volatile compound formation in Agave duranguensis juice fermented at 28 °C with the native yeast strains Saccharomyces cerevisiae ITD00185, Hanseniaspora uvarum ITD00108, Torulaspora delbrueckii ITD00110 and Kluyveromyces marxianus ITD00211 were analysed. Nitrogen content in the Agave juice unsupplemented with NH4Cl was low. In the control treatments, the four yeasts consumed nitrogen at approximately the same rate, almost completely finishing by 24 h. Nitrogen supplementation increased biomass production with S. cerevisie, H. uvarum and T. delbrueckii but not with K. marxianus. K. marxianus consumed the total assimilable nitrogen more slowly than the other strains in the supplemented fermentations. In addition, the volatile compound profile differed between the studied yeasts. Volatile compound production by S. cerevisiae, H. uvarum and K. marxianus was higher in the supplemented fermentations, compared to the unsupplemented ones. In T. delbrueckii, the initial volatile compound concentrations remained unchanged, or decreased for some compounds, with nitrogen supplementation. The initial acetic acid and vanillin concentrations decreased with all strains tested and nitrogen supplementation. Furthermore, the concentration of higher alcohols increased with S. cerevisiae and H. uvarum in the NH4Cl-supplemented fermentations, but they decreased with T. delbrueckii and K. marxianus. In conclusion, the addition of an inorganic nitrogen source promotes microorganism metabolism, increases biomass formation and benefits the fermentation process.

References
Fiore C, Arrizon J, Gschaedler A, Flores J, Romano P (2005) Comparison between yeast from grape and agave must for traits of technological interest. World J Microbiol Biotechnol 21(6–7):1141–1147. doi:10.1007/s11274-005-0196-5
De León-Rodríguez A, González-Hernández L, Barba de la Rosa AP, Escalante-Minakata P, López G (2006) Characterization of volatile compounds of mezcal, an ethnic alcoholic beverage obtained from Agave salmiana. J Agric Food Chem 54(4):1337–1341. doi:10.1021/jf052154+
Lachance MA (1995) Yeast communities in a natural tequila fermentation. Antonie Van Leeuwenhoek 68:151–160. doi:10.1007/BF00873100
Díaz–Montaño DM, Marie–Line D, Estarrón–Espinosa M, Strehaiano P (2008) Fermentative capability and aroma compound production by yeast strains isolated from Agave tequilana Weber juice. Enzyme Microbial Technol 42(7):608–616. doi:10.1016/j.enzmictec.2007.12.007
Escalante–Minakata P, Blaschek H, Barba de la Rosa A, Santos L, De León–Rodríguez A (2008) Identification of yeast and bacteria involved in the mezcal fermentation of Agave salmiana. Lett Appl Microbiol 46:626–630. doi:10.1111/j.1472-765X.2008.02359.x
Varela C, Pizarro F, Agosin E (2004) Biomass content governs fermentation rate in nitrogen-deficient wine musts. Apple Environ Microbiol 70(6):3392–3400. doi:10.1128/AEM.70(6),3392-3400.2004
Ribereau–Gayon P (1999) Observations related to the causes and consequences of stuck fermentation in vinification. J Int Sci Vigne Vin 33(1):39–48
Mancilla-Margalli N, Lopez MG (2002) Generation of Maillard compounds from inulin during the thermal processing of Agave tequilana Weber Var. azul. J Agric Food Chem 50(4):806–812. doi:10.1021/jf0110295
Arrizon J, Gschaedler A (2002) Increasing fermentation efficiency at high sugar concentrations by supplementing an additional source of nitrogen during the exponential phase of the tequila fermentation process. Can J Microbiol 48(11):965–970. doi:10.1139/w02-093
Aerny J (1996) Composés azotes des moûts et des vins. Rev Suisse Vitic Arboric Hortic 28:161–165
Gómez–Alonso S, Hermosín–Gutiérrez I, García–Romero E (2007) Simultaneous HPLC analysis of biogenic amines, amino acids, and ammonium ion as aminoenone derivates in wine and beer samples. J Agric Food Chem 55:608–613. doi:10.1021/jf062820m
Ortega C, López R, Cacho J, Ferreira V (2001) Fast analysis of important wine volatile compounds. Development and validation of a new method based on gas chromatographic–flame ionisation detection analysis of dichloromethane microextracts. J Chromatogr 923(1–2):205–214. doi:10.1016/S0021-9673(01)00972-4
Pina C, Santos C, Couto JA (2004) Ethanol tolerance of five non-Sacharomyces wine yeasts in comparison with a strain of Saccharomyces cerevisiae: influence of different culture conditions. Food Microbiol 21:439–447
Vera–Guzmán AM, Santiago–García PA, López MG (2009) Compuestos Volátiles Aromáticos Generados Durante la Elaboración de Mezcal de Agave angustifolia y Agave potatorum. Rev Fitotec Mex 32:273–279
Messenguy F, André B, Dubois E (2006) Diversity of nitrogen metabolism among yeast species: regulatory and evolutionary aspects. In: Rosa CA, Péter G (eds) Biodiversity and ecophysiology of yeast. Springer, Berlin, pp 123–153
Jiranek V, Langridge P, Henschke PA, (1990) Nitrogen requirements of yeast during wine fermentation. In: Williams PJ, Davidson DM, Lee TH (eds), In: Proceedings of the 7 Australian wine industry technical conference, Australian Industrial Publishers S.A. Adelaide Australia, pp 166–171
ter Schure EG, van Riel NA, Verrips C (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24:67–83. doi:10.1111/j.1574-6976.2000.tb00533.x
Miller AC, Wolff SR, Bisson LF, Ebeler SE (2007) Yeast strain and nitrogen supplementation: dynamics of volatile ester production in chardonnay juice fermentations. Am J Enol Vitic 58(4):470–483
Torija M, Beltran G, Novo M, Poblet M, Guillamon JM, Mas A, Rozès N (2003) Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int J Food Microbiol 85:127–136. doi:10.1016/S0168-1605(02)00506-8
Perez-Coello MS, Briones-Perez AI, Ubeda-Iranzo JF, Martin-Alvarez PJ (1999) Characteristics of wines fermented with different Saccharomyces cerevisiae strains isolated from the La Mancha region. Food Microbiol 16(6):563–573. doi:10.1006/fmic.1999.0272
Torrea D, Fraile P, Garde T, Ancin C (2003) Production of volatile compounds in the fermentation of Chardonnay musts inoculated with two strains of Saccharomyces cerevisiae with different nitrogen demands. Food Control 14(8):565–571. doi:10.1016/S0956-7135(02)00146-9
Acknowledgments
This research was supported by the Consejo Nacional de la Ciencia y Tecnología (CONACYT). We also want to thank the Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Departamento de Biotecnología de los Alimentos and the Facultad de Enologia, Universitat Rovira i Virgili. Departamento de Bioquimica y Biotecnologia.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rutiaga-Quiñones, O.M., Córdova, É., Martell-Nevárez, M.A. et al. Volatile compound production in Agave duranguensis juice fermentations using four native yeasts and NH4Cl supplementation. Eur Food Res Technol 235, 29–35 (2012). https://doi.org/10.1007/s00217-012-1729-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00217-012-1729-4