Skip to main content
Log in

Reducing methyl eugenol content in Rosa damascena Mill rose oil by changing the traditional rose flower harvesting practices

  • Short Communication
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Methyl eugenol (ME) is a naturally occurring carcinogenic compound found in a number of essential oils including rose oil distilled from Rosa damascena Mill flowers. In the current study, we evaluate the effect of flower harvesting practices on the ME content in the produced rose oil. The obtained results show nearly twice reduction in ME content in the rose oil distilled from petals of full-blown flowers. At the same time, GC/MS analysis of rose oils distilled from stages 3 and 4 rose flower buds (flower buds prior opening of petals) showed more than 5 times ME reduction and preservation of the relative content of the major rose oil compounds. Moreover, the comparative study of rose flower yield and rose oil content of rose buds and full-blown flowers showed that harvesting of rose flower buds results in above three times increase in the formed flower buds from the studied rose plants and more than twice increase in the rose flower and rose oil yields for the same rose plantation areas. The overall results from this study allow us to propose a change in the traditional full-blown rose flower harvesting to harvesting of rose flower buds at stages 3 and 4 during the entire flowering period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Phillips DH, Reddy MV, Randerath K (1984) 32P-post-labelling analysis of DNA adducts formed in the livers of animals treated with safrole, estragole and other naturally-occurring alkenylbenzenes. II. Newborn male B6C3F1 mice. Carcinogenesis 5(12):1623–1628

    Article  CAS  Google Scholar 

  2. Burkey JL, Sauer JM, McQueen CA, Sipes IG (2000) Cytotoxicity and genotoxicity of methyleugenol and related congeners—a mechanism of activation for methyleugenol. Mutat Res Fund Mol M 453(1):25–33

    Article  CAS  Google Scholar 

  3. Chan VSW, Caldwell J (1992) Comparative induction of unscheduled DNA-synthesis in cultured rat hepatocytes by allylbenzenes and their 1′-hydroxy metabolites. Food Chem Toxicol 30(10):831–836

    Article  CAS  Google Scholar 

  4. Gardner I, Wakazono H, Bergin P, deWaziers I, Beaune P, Kenna JG, Caldwell J (1997) Cytochrome P450 mediated bioactivation of methylglyoxal to 1′-hydroxymethyleugenol in Fischer 344 rat and human liver microsomes. Carcinogenesis 18(9):1775–1783

    Article  CAS  Google Scholar 

  5. Howes AJ, Chan VSW, Caldwell J (1990) Structure-specificity of the genotoxicity of some naturally-occurring alkenylbenzenes determined by the unscheduled DNA-synthesis assay in rat hepatocytes. Food Chem Toxicol 28(8):537–542

    Article  CAS  Google Scholar 

  6. NTP Toxicology and Carcinogenesis Studies of Methyleugenol (CAS NO. 93-15-2) in F344/N Rats and B6C3F1 Mice (Gavage Studies) (2000). National Toxicology Program technical report series 491:1–412

  7. Rietjens IMCM, Boersma MG, van der Woude H, Jeurissen SMF, Schutte ME, Alink GM (2005) Flavonoids and alkenylbenzenes: mechanisms of mutagenic action and carcinogenic risk. Mutat Res Fund Mol M 574(1–2):124–138

    Article  CAS  Google Scholar 

  8. Al-Subeihi AAA, Spenkelink B, Rachmawati N, Boersma MG, Punt A, Vervoort J, van Bladeren PJ, Rietjens IMCM (2011) Physiologically based biokinetic model of bioactivation and detoxification of the alkenylbenzene methyleugenol in rat. Toxicol In Vitro 25(1):267–285

    Article  CAS  Google Scholar 

  9. Jeurissen SMF, Bogaards JJP, Boersma MG, ter Horst JPF, Awad HA, Fiamegos YC, van Beek TA, Alink GM, Sudholter EJR, Cnubben NHP, Rietjens IMCM (2006) Human cytochrome P450 enzymes of importance for the bioactivation of methyleugenol to the proximate carcinogen 1′-hydroxymethyleugenol. Chem Res Toxicol 19(1):111–116

    Article  CAS  Google Scholar 

  10. Chen XW, Serag ES, Sneed KB, Zhou SF (2011) Herbal bioactivation, molecular targets and the toxicity relevance. Chem Biol Interact 192(3):161–176

    Article  CAS  Google Scholar 

  11. Ding W, Levy DD, Bishop ME, Lascelles ELC, Kulkarni R, Chang CW, Aidoo A, Manjanatha MG (2011) Methyleugenol genotoxicity in the Fischer 344 rat using the comet assay and pathway-focused gene expression profiling. Toxicol Sci 123(1):103–112

    Article  CAS  Google Scholar 

  12. Abdo KM, Cunningham ML, Snell ML, Herbert RA, Travlos GS, Eldridge SR, Bucher JR (2001) 14-Week toxicity and cell proliferation of methyleugenol administered by gavage to F344 rats and B6C3F1 mice. Food Chem Toxicol: Int J Publ Br Ind Biol Res Assoc 39(4):303–316

    CAS  Google Scholar 

  13. Johnson JD, Ryan MJ, Toft JD II, Graves SW, Hejtmancik MR, Cunningham ML, Herbert R, Abdo KM (2000) Two-year toxicity and carcinogenicity study of methyleugenol in F344/N rats and B6C3F(1) mice. J Agric Food Chem 48(8):3620–3632

    Article  CAS  Google Scholar 

  14. Opinion of the Scientific Committee on Food on Methyl Eugenol (4-Allyl-1,2-Dimethoxybenzene) (2001). Health and consumer protection directorate general, scientific committee on food SCF/CS/FLAV/FLAVOUR/4 ADD1 Final http://ec.europa.eu/food/fs/sc/scf/out102_en.pdf

  15. Methhyl eugenol IFRA Standard, International Fragrance Association (2009). http://www.ifraorg.org/en-us/standards_restricted

  16. Smith RL, Adams TB, Doull J, Feron VJ, Goodman JI, Marnett LJ, Portoghese PS, Waddell WJ, Wagner BM, Rogers AE, Caldwell J, Sipes IG (2002) Safety assessment of allylalkoxybenzene derivatives used as flavouring substances—methyl eugenol and estragole. Food Chem Toxicol 40(7):851–870

    Article  CAS  Google Scholar 

  17. Robison SH, Barr DB (2006) Use of biomonitoring data to evaluate methyl eugenol exposure. Environ Health Perspect 114(11):1797–1801

    CAS  Google Scholar 

  18. Smith B, Cadby P, Leblanc JC, Setzer RW (2010) Application of the margin of exposure (MoE) approach to substances in food that are genotoxic and carcinogenic example: methyleugenol, CASRN: 93-15-2. Food Chem Toxicol 48:S89–S97

    CAS  Google Scholar 

  19. Rusanov K, Kovacheva N, Rusanova M, Atanassov I (2011) Traditional Rosa damascena flower harvesting practices evaluated through GC/MS metabolite profiling of flower volatiles. Food Chem 129(4):1851–1859

    Article  CAS  Google Scholar 

  20. Rusanov K, Kovacheva N, Vosman B, Zhang L, Rajapakse S, Atanassov A, Atanassov I (2005) Microsatellite analysis of Rosa damascena Mill. accessions reveals genetic similarity between genotypes used for rose oil production and old Damask rose varieties. Theor Appl Genet 111(4):804–809

    Article  CAS  Google Scholar 

  21. Rusanov K, Kovacheva N, Atanassov A, Atanassov I (2009) Rosa damascena Mill., the oil-bearing Damask rose: genetic resources, diversity and perspectives for molecular breeding. Floric Ornam Biotechnol 3(Special issue 1):14–20

    Google Scholar 

  22. Rusanov K, Kovacheva N, Atanassov A, Atanassov I (2005) Lessons from the microsatellite characterization of a segregating population derived from seeds of open pollinated Rosa damascena Mill. F. Trigintipetala plants. Biotechnol Biotechnol Eq 19(2):72–79

    CAS  Google Scholar 

  23. Wu S, Watanabe N, Mita S, Ueda Y, Shibuya M, Ebizuka Y (2003) Two O-methyltransferases isolated from flower petals of Rosa chinensis var. spontanea involved in scent biosynthesis. J Biosci Bioeng 96(2):119–128

    CAS  Google Scholar 

  24. Staikov V, Zolotovich G (1957) Lokalizatzia na eterichnoto maslo v tzveta na Rosa damascena Miller. Izvestia na Instituta po rastenievadstvo IV:207–215 (in Bulgarian)

    Google Scholar 

  25. ISO 9842:2003 Oil of rose (Rosa x damascena Miller). International standards for business, Government and Society Available online: http://www.iso.org

Download references

Acknowledgments

The authors would like to thank Rumiana Velcheva (ABI) and Ivaila Dincheva (ABI) for the excellent technical assistance and the National Science Fund at the Ministry of Education, Youth and Science, Bulgaria, for supporting the presented research via project no. DO02-105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krasimir Rusanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusanov, K., Kovacheva, N., Rusanova, M. et al. Reducing methyl eugenol content in Rosa damascena Mill rose oil by changing the traditional rose flower harvesting practices. Eur Food Res Technol 234, 921–926 (2012). https://doi.org/10.1007/s00217-012-1703-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-012-1703-1

Keywords

Navigation