Skip to main content

Sinapic acid derivatives in defatted Oriental mustard (Brassica juncea L.) seed meal extracts using UHPLC-DAD-ESI-MSn and identification of compounds with antibacterial activity

Abstract

This study identified phenolic compounds from mustard seed meal and characterized their antibacterial activity. Phenolic compounds were extracted from defatted Oriental mustard (Brassica juncea L.) seed meal and characterized using ultra-high-performance liquid chromatography with diode array and electrospray ionization-mass spectrometric detection (UHPLC-DAD-ESI-MSn). Sinapic acid and several sinapoyl conjugates were identified based on retention time, UV spectra, MS fragmentation pattern, and by comparison with the authentic sinapic acid reference substance. The crude extract and a purified phenolic fraction exhibited selective antibacterial effects against Gram-negative and Gram-positive spoilage bacteria including Staphylococcus aureus and Listeria monocytogenes; Lactobacillus plantarum was resistant. After alkaline hydrolysis, only sinapic acid could be detected, enabling quantification with the authentic reference substance. Alkaline hydrolysis released 2.66 ± 0.00 mg sinapic acid g−1 dry matter defatted mustard seed meal. Minimum inhibitory concentrations of the hydrolyzed extract against Bacillus subtilis, Escherichia coli, L. monocytogenes, Pseudomonas fluorescens, and S. aureus were 0.1 g L−1 or less. Growth of L. plantarum remained unaffected. Sinapic acid and sinapoyl esters are generally found in members of the Brassicaceae family. Methods for their fast identification will be useful in chemotaxonomic studies. The release of sinapic acid after alkaline hydrolysis not only allows for the quantification using the reference substances but also facilitates the standardization of the antibacterial activity of plant extracts for use as food preservative.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Aires A, Mota VR, Saavedra MJ, Monteiro AA, Simões M, Rosa EAS, Bennett RN (2009) Initial in vitro evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria. J Appl Microbiol 106:2096–2105

    Article  CAS  Google Scholar 

  2. Aslam M, Nattress F, Greer G, Yost C, Gill C, McMullen LM (2003) Origin of beef contamination and genetic diversity of Escherichia coli in beef cattle. Appl Environ Microbiol 69:2794–2799

    Article  CAS  Google Scholar 

  3. Ayaz FA, Hayirlioglu-Ayaz S, Alpay-Karaoglu S, Grúz J, Valentová K, Jitka Ulrichová J, Strnad M (2008) Phenolic acid contents of kale (Brassica oleraceae L. var. acephala DC.) extracts and their antioxidant and antibacterial activities. Food Chem 107:19–25

    Article  CAS  Google Scholar 

  4. Barthelmebs L, Divies C, Cavin JF (2000) Knockout of the p-coumarate decarboxylase gene from Lactobacillus plantarum reveals the existence of two other inducible enzymatic activities involved in phenolic acid metabolism. Appl Environ Microbiol 66:3368–3375

    Article  CAS  Google Scholar 

  5. Baumert A, Milkowski C, Schmidt J, Nimtz M, Wray V, Strack D (2005) Formation of a complex pattern of sinapate esters in Brassica napus seeds, catalyzed by enzymes of a serine carboxypeptidase-like acyltransferase family? Phytochemistry 66:1334–1345

    Article  CAS  Google Scholar 

  6. Bouchereau AJ, Hamelin J, Lamour I, Renard M, Larher F (1991) Distribution of sinapine and related compounds in seeds of Brassica and allied genera. Phytochemistry 30:1873–1881

    Article  CAS  Google Scholar 

  7. Campos FM, Couto JA, Hogg TA (2003) Influence of phenolic acids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. J Appl Microbiol 94:167–174

    Article  CAS  Google Scholar 

  8. Cartea MA, Francisco A, Soemgas P, Velasco P (2011) Phenolic compounds in Brassica vegetables. Molecules 16:251–280

    Article  CAS  Google Scholar 

  9. Ferreres F, Valentão P, Llorach R, Pinheiro C, Cardoso L, Pereira JA, Sousa C, Seabra RM, Andrade PB (2005) Phenolic compounds in external leaves of tronchuda cabbage (Brassica oleracea L. var. costata DC). J Agric Food Chem 53:2901–2907

    Article  CAS  Google Scholar 

  10. Gänzle MG, Hertel C, Hammes WP (1996) Antimicrobial activity of bacteriocin-producing cultures in meat products: modelling of the effect of pH, NaCl, and nitrite concentrations on the antimicrobial activity of sakacin P against Listeria ivanovii DSM20750. Fleischwirtschaft 76:409–412

    Google Scholar 

  11. Gänzle MG, Ulmer HM, Vogel RF (2001) High pressure inactivation of Lactobacillus plantarum in a beer model system. J Food Sci 66:1174–1181

    Article  Google Scholar 

  12. Harbaum B, Hubbermann EM, Wolff C, Herges R, Zhu Z, Schwarz K (2007) Identification of flavonoids and hydroxycinnamic acids in pak choi varieties (Brassica campestris L. ssp. chinensis var. communis) by HPLC–ESI-MSn and NMR and their quantification by HPLC–DAD. J Agric Food Chem 55:8251–8260

    Article  CAS  Google Scholar 

  13. Khattab R, Eskin M, Aliani M, Thiyam U (2010) Determination of sinapic acid derivatives in canola extracts using high-performance liquid chromatography. J Am Oil Chem Soc 87:147–155

    Article  CAS  Google Scholar 

  14. Lin LZ, Sun J, Chen P, Harnly, J (2011) UHPLC-PDA-ESI/HRMS/MSn analysis of anthocyanins, flavonol glycosides, and hydroxycinnamic acid derivatives in red mustard greens (Brassica juncea Coss variety). J Agric Food Chem 59:12059–12072

    Google Scholar 

  15. Lin CM, Kim J, Du WX, Wei CI (2000) Bactericidal activity of isothiocyanate against pathogens on fresh produce. J Food Prot 63:25–30

    CAS  Google Scholar 

  16. Marles MAS, Gruber MY, Scoles GJ, Muir AD (2003) Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase level. Phytochem 62:663–672

    Article  CAS  Google Scholar 

  17. Mattila P, Kumpulainen J (2002) Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J Agric Food Chem 50:3660–3667

    Article  CAS  Google Scholar 

  18. Milkowski C, Strack D (2010) Sinapate esters in brassicaceous plants: biochemistry, molecular biology, evolution and metabolic engineering. Planta 232:19–35

    Article  CAS  Google Scholar 

  19. Naczk M, Amarowicz R, Sullivan A, Shahidi F (1998) Current research developments on polyphenolics of rapeseed/canola: a review. Food Chem 62:489–502

    Article  CAS  Google Scholar 

  20. Narváez-Cuenca CE, Vincken JP, Gruppen H (2011) Identification and quantification of (dihydro)hydroxycinnamic acids and their conjugates in potato by UHPLC-DAD-ESI-MSn. Food Chem 130:730–738

    Article  Google Scholar 

  21. Nielsen JK, Olsen CE, Petersen MK (1993) Acylated flavonol glycosides from cabbage leaves. Phytochemistry 34:539–544

    Article  CAS  Google Scholar 

  22. Nowak H, Kujawa K, Zadernowski R, Roczniak B, Koztowska H (1998) Antioxidative and bactericidal properties of phenolic compounds in rapeseeds. Fat Sci Technol 94:149–152

    Google Scholar 

  23. Olsen H, Aaby K, Borge GIA (2009) Characterization and quantification of flavonoids and hydroxycinnamic acids in curly kale (Brassica oleracea L. convar. acephala var. sabellica) by HPLC-DAD-ESI-MSn. J Agric Food Chem 57:2816–2825

    Article  CAS  Google Scholar 

  24. Oram RN, Kirk JTO, Veness PE, Hurlstone CJ, Edlington JP, Halsall DM (2005) Breeding Indian mustard [Brassica juncae (L.) Czern.] for cold-pressed, edible oil production—a review. Austr J Agric Res 56:581–596

    Article  Google Scholar 

  25. Puupponen-Pimiä R, Nohynek L, Meier C, Kähkönen M, Heinonen M, Hopia A, Oksman-Caldentey KM (2001) Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol 90:494–507

    Article  Google Scholar 

  26. Price KR, Casuscelli F, Colquhoun IJ, Rhodes MJC (1997) Hydroxycinnamic acid esters from broccoli florets. Phytochemistry 45:1683–1687

    Article  CAS  Google Scholar 

  27. Reguant C, Bordons A, Arolla L, Rozès N (2000) Influence of phenolic compounds on the physiology of Oenococcus oeni from wine. J Appl Microbiol 88:1065–1071

    Article  CAS  Google Scholar 

  28. Rodríguez H, Landete JM, de las Rivas B, Muñoz R (2008) Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748T. Food Chem 107:1393–1398

    Article  Google Scholar 

  29. Röcken W, Spicher G (1993) Fadenziehende Bakterien; Vorkommen, Bedeutung und Gegenmassnahmen. Getreide Mehl Brot 47:30–35

    Google Scholar 

  30. Salih AG, Le Quéré JM, Drilleau JF (2000) Effect of hydroxycinnamic acids on the growth of lactic bacteria. Sci Aliment 20:537–560

    Article  CAS  Google Scholar 

  31. Sánchez-Maldonado AF, Schieber A, Gänzle MG (2011) Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J Appl Microbiol 111:1176–1184

    Article  Google Scholar 

  32. Tesaki S, Tanabe S, Ono H, Fukushi E, Kawabata J, Watanabe M (1998) 4-Hydroxy-4-nitrophenylacetic acid and sinapic acid as antibacterial compounds from mustard seeds. Biosci Biotechnol Biochem 62:998–1000

    Article  CAS  Google Scholar 

  33. Thiyam U, Stöckmann H, Zum Felde T, Schwarz K (2006) Antioxidative effects of the main sinapic acid derivatives from rapeseed and mustard oil by-products. Eur J Lipid Sci Technol 108:239–248

    Article  CAS  Google Scholar 

  34. Thiyam U, Pickardt C, Ungewiss J, Baumert A (2009) De-oiled rapeseed and a protein isolate: characterization of sinapic acid derivatives by HPLC-DAD and LC-MS. Eur Food Res Technol 229:825–831

    Article  CAS  Google Scholar 

  35. Tiwari BK, Valdramidid VP, O’Donnell CP, Muthukumarappan K, Bourke P, Cullen PJ (2009) Application of natural antimicrobials for food preservation. J Agric Food Chem 57:5987–6000

    Article  CAS  Google Scholar 

  36. Vuorela S, MeyerAS HeinonenM (2003) Quantitative analysis of the main phenolics in rapeseed meal and oils processed differently using enzymatic hydrolysis and HPLC. Eur Food Res Technol 217:517–523

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Biofume Technologies Inc. (Saskatoon, SK, Canada) for providing mustard samples. The National Sciences and Engineering Research Council of Canada, NSERC, is acknowledged for funding. A.S. and M.G.G. acknowledge funding from the Canada Research Chair Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Gänzle.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Engels, C., Schieber, A. & Gänzle, M.G. Sinapic acid derivatives in defatted Oriental mustard (Brassica juncea L.) seed meal extracts using UHPLC-DAD-ESI-MSn and identification of compounds with antibacterial activity. Eur Food Res Technol 234, 535–542 (2012). https://doi.org/10.1007/s00217-012-1669-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-012-1669-z

Keywords

  • Mustard seeds
  • Sinapic acid
  • Antibacterial phenolic compounds
  • Lactobacillus
  • Escherichia coli
  • UHPLC