Skip to main content
Log in

Sensitive DNA-based allergen detection depends on food matrix and DNA isolation method

  • Original paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Performance of DNA-based methods used for allergen detection does not only depend on the real-time PCR system, but also on the DNA isolation method used. Comparison of different isolation methods showed that yield and purity of isolated DNA strongly depends on the isolation method deployed as well as on the composition of the food matrix (matrix effect). Detection of trace amounts of allergens requires efficient methods for DNA isolation which remove inhibitors and yield pure DNA. This is particularly important for quantitative analysis. Due to matrix effects, methods, which have the ability to circumvent these effects, are of great interest. Therefore, a sequence-specific method for isolation of target DNA based on magnetic particles (MCH) has been established and compared to other methods for isolation of total DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Directive 2003/89/EC. Official Journal of the European Union. L308 (25/11/2003) The European Parliament and the Council of the European Union, Brussels, pp 15–18

  2. Directive 2005/26/EC. Official Journal of the European Union. L75 (22/03/2005) The European Parliament and the Council of the European Union, Brussels, pp 33–34

  3. Directive 2005/63/EC. Official Journal of the European Union. L258 (04/11/2005) The European Parliament and the Council of the European Union, Brussels, p 3

  4. Directive 2006/142/EC. Official Journal of the European Union. L368 (23/12/2006). The European Parliament and the Council of the European Union, Brussels, pp 110–111

  5. Directive 2007/68/EC. Official Journal of the European Union. L310 (28/11/2007) The European Parliament and the Council of the European Union, Brussels, pp 11–14

  6. Poms RE, Klein CL, Anklam E (2004) Methods for allergen analysis in food: a review. Food Addit Contam 21(1):1–31

    Article  CAS  Google Scholar 

  7. de Moraes RR, Maruniak JE, Funderburk JE (1999) Methods for detection of Anticarsia gemmatalis nucleopolyhedrovirus DNA in soil. Appl Environ Microbiol 65(6):2307–2311

    Google Scholar 

  8. Mangiapan G, Vokurka M, Schouls L, Cadranel J, Lecossier D, van Embden J et al (1996) Sequence capture-PCR improves detection of mycobacterial DNA in clinical specimens. J Clin Microbiol 34(5):1209–1215

    CAS  Google Scholar 

  9. Thompson DE, Rajal VB, De Batz S, Wuertz S (2006). Detection of Salmonella spp. in water using magnetic capture hybridization combined with PCR or real-time PCR. J Water Health 4(1):67–75

    Google Scholar 

  10. Ha Y, Fessehaie A, Ling KS, Wechter WP, Keinath AP, Walcott RR (2009) Simultaneous detection of Acidovorax avenae subsp. citrulli and Didymella bryoniae in cucurbit seedlots using magnetic capture hybridization and real-time polymerase chain reaction. Phytopathology 99(6):666–678

    Article  CAS  Google Scholar 

  11. Chen J, Johnson R, Griffiths M (1998) Detection of verotoxigenic Escherichia coli by magnetic capture-hybridization PCR. Appl Environ Microbiol 64(1):147–152

    CAS  Google Scholar 

  12. Chen J, Griffiths MW (2001) Detection of Salmonella and simultaneous detection of Salmonella and Shiga-like toxin-producing Escherichia coli using the magnetic capture hybridization polymerase chain reaction. Lett Appl Microbiol 32:7–11

    Article  Google Scholar 

  13. Almomani R, van der Heijden J, Ariyurek Y, Lai Y, Bakker E, van Galen M, Breuning MH, den Dunnen JT (2011) Experiences with array-based sequence capture; toward clinical applications. Eur J Hum Genetics 19:50–55

    Article  Google Scholar 

  14. Shearer AE, DeLuca AP, Hildebrand MS, Taylor KR, Gurrola J II, Scherer S, Scheetz TE, Smith RJH (2010) Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing. PNAS 107(49):21104–21109

    Article  CAS  Google Scholar 

  15. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, Nayir A, Bakkaloğlu A, Özen S, Sanjad S, Nelson-Williams C, Farhi A, Mane S, Lifton RP (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. PNAS 106(45):19096–19101

    Article  CAS  Google Scholar 

  16. D’Ascenzo M, Meacham C, Kitzman J, Middle C, Knight J, Winer R, Kukricar M, Richmond T, Albert TJ, Czechanski A, Donahue LR, Affourtit J, Jeddeloh JA, Reinholdt A (2009) Mutation discovery in the mouse using genetically guided array capture and re-sequencing. Mamm Genome 20(7):424–436

    Article  Google Scholar 

  17. Bauer T, Kirschbaum K, Panter S, Kenk M, Bergemann J (in press, accepted 2011, Feb 05) Sensitive detection of soy (Glycine max) by real-time polymerase chain reaction targeting the mitochondrial atpA gene. J AOAC Int (ahead of print)

  18. Engler-Blum G, Raiss C, Burgmaier-Thielert E (2007) Nachweis von Allergenen in Lebensmitteln mittels immunologischer und molekularbiologischer Verrfahren. Gegenüberstellung von PCR- und ELISA-Verfahren am Beispiel von Erdnuss und Haselnuss. Deutsche Lebensmittel-Rundschau 103(3):101–108

  19. German’s official collection of analytical methods by § 64 LFGB L44.00-08 (2010, January). Untersuchung von Lebensmitteln—Nachweis einer spezifischen DANN-Sequenz aus Haselnuss (Corylus avellana) in Schokolade mittels Real-time PCR. Beuth-Verlag, Berlin

  20. Burns M, Valdivia H (2008) Modelling the limit of detection in real-time quantitative PCR. Eur Food Res Technol 226:1513–1524

    Article  CAS  Google Scholar 

  21. Bliss CI (1934) The method of probits—a correction. Science 79:38–39

    Article  CAS  Google Scholar 

  22. Shah CA, Böni J, Bisset LR, Seebach JD, Schüpbach J (2003) Ultra-sensitive and specific detection of porcine endogenous retrovirus (PERV) using a sequence-capture real-time PCR approach. J Virol Methods 109(2):209–216

    Article  CAS  Google Scholar 

  23. Scaravelli E, Brohée M, Marchelli R, van Hengel AJ (2008) Development of three real-time PCR assays to detect peanut allergen residue in processed food products. Eur Food Res Technol 227:857–869

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank Sven Hellwig, Katja Kirschbaum and Elisabeth Burgmaier-Thielert for their support. This work was funded by the BMBF (Bundesministerium für Bildung und Forschung), Germany (FKZ: 1734A08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Panter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenk, M., Panter, S., Engler-Blum, G. et al. Sensitive DNA-based allergen detection depends on food matrix and DNA isolation method. Eur Food Res Technol 234, 351–359 (2012). https://doi.org/10.1007/s00217-011-1639-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-011-1639-x

Keywords

Navigation