European Food Research and Technology

, Volume 234, Issue 2, pp 305–313 | Cite as

Rheological characterization and activation energy values of binary mixtures of gellan

  • Rafael Emilio González-Cuello
  • Emma Gloria Ramos-Ramírez
  • Alfredo Cruz-Orea
  • Juan Alfredo Salazar-Montoya
Original Paper


The present study determined the flow behavior and activation energy of high (HA) and low (LA) acyl gellan dispersions (0.2%) and their mixtures as a function of preparation temperature (25 and 90 °C) and of the presence or absence of Ca2+ (30 mM). Heated gellan mixtures containing calcium were acidified with δ-gluconolactone to obtain gels and determine linear viscoelasticity using the Kelvin–Voigt model. The studied dispersions showed non-Newtonian shear-thinning behavior. HA dispersions (with and without Ca2+) showed the highest activation energy values, 88.60 and 51.18 kJ/mol. Whereas, LA dispersions showed the lowest activation energy values, 3.73 and 9.19 kJ/mol. With respect to the rheological studies, it was observed that the relationships between HA and LA gellan did not affect the recovery percentages because similar values were obtained (86.90–90.00%), and this behavior along with the mean viscosity values obtained in the gel mixtures could indicate that the hydrogen bond formation between both gellan helix (HA, LA) is possible. These results can contribute to possible industrial applications of gellans in the development of new alimentary products.


High and low acyl gellan Viscoelasticity Kelvin–Voigt model Activation energy 


  1. 1.
    Tang J, Lelievre J, Tung MA, Zeng Y (1994) Polymer and ion concentration effects on gellan gel strength and strain. J Food Sci 59:216–220. doi:10.1111/j.1365-621.1994.tb06934.x CrossRefGoogle Scholar
  2. 2.
    Takahashi R, Akutu M, Kubota K, Nakamura K (1999) Characterization of gellan gum in aqueous NaCl solution. Colloid Polym Sci 114:1–7. doi:10.1007/3-540-48349-7_1 CrossRefGoogle Scholar
  3. 3.
    Sanderson GR (1990) Gellan gum. In: Harris P (ed) Food gels. Elsevier Applied Science, New York, pp 201–232CrossRefGoogle Scholar
  4. 4.
    Kuo MS, Mort AJ (1986) Identification and location of L-glycerate, an unusual acyl substituent in gellan gum. Carb Res 156:173–187. doi:10.1016/S0008-6215(00)90109-5 CrossRefGoogle Scholar
  5. 5.
    Mao R, Tang J, Swanson G (2000) Texture properties of high and low acyl mixed gellan gels. Carb Polym 41:331–338. doi:10.1016/S0144-8617(99)00108-3 CrossRefGoogle Scholar
  6. 6.
    Huang Y, Tang J, Swanson G, Barbara A (2003) Effect of calcium concentration on textural properties of high and low acyl mixed gellan gels. Carb Polym 54:517–522. doi:10.1016/j.carbpol.2003.08.006 CrossRefGoogle Scholar
  7. 7.
    Sanderson GR, Bell VL, Clark RC, Ortega D (1988) The texture of gellan gum. IRL Press, Oxford, pp 301–308Google Scholar
  8. 8.
    Huang Y, Tang J, Swanson G, Cavinato A, Lin M, Barbara A (2003) Near infrared spectroscopy: a new tool for studying physical and chemical properties of polysaccharide gels. Carb polym 53:281–288. doi:10.1016/S0144-8617(03)00067-5 CrossRefGoogle Scholar
  9. 9.
    Huang Y, Singh P, Tang J, Swanson B (2004) Gelling temperatures of high acyl gellan as affected by monovalent and divalent cations with dynamic rheological analysis. Carb polym 56:27–33. doi:10.1016/j.carbpol.2003.11.014 CrossRefGoogle Scholar
  10. 10.
    Matsukawa S, Watanabe T (2007) Gelation mechanism and network structure of mixed solution of low-and high-acyl gellan studied by dynamic viscoelasticity, CD and NMR measurement. Food Hydrocol 21:1355–1361. doi:10.1016/j.foodhyd.2006.10.013 CrossRefGoogle Scholar
  11. 11.
    Matsukawa S, Tang Z, Watanabe T (1999) Hydrogen-bonding behavior of gellan in solution during structural change observed by 1H NMR and circular dichroism methods. Colloid Polym Sci 114:15–24. doi:10.1007/3-540-48349-7_3 CrossRefGoogle Scholar
  12. 12.
    Takigawa T, Nakajima K, Masuda T (1999) Rheological properties of the gellan/water system. Colloid Polym Sci 144:62–67. doi:10.1007/3-540-48349-7_10 CrossRefGoogle Scholar
  13. 13.
    Nickerson MT, Paulson AT, Speers RA (2003) Rheological properties of gellan solutions: effect of calcium ions and temperature on pre-gel formation. Food Hydrocol 17:577–583. doi:10.1016/S0268-005X(02)00075-9 CrossRefGoogle Scholar
  14. 14.
    Kani K, Horinaka J, Maeda S (2005) Effects of monovalent catión and anion species on conformation of gellan chains in aqueous systems. Carb Polym 61:168–173. doi:10.1016/j.carbpol.2005.04.011 CrossRefGoogle Scholar
  15. 15.
    Pérez A, González JG, Beristain CI, Vernon EJ, Mendoza MG (2003) Estimation of the activation energy of carbohydrate polymers blends as criteria for their use as wall material for spray-dried microcapsules. Carb Polym 53:197–203. doi:10.1016/S0144-8617(03)00052-3 CrossRefGoogle Scholar
  16. 16.
    Nickerson MT, Paulson AT, Speers RA (2004) Time-temperature studies of gellan polysaccharide gelation in the presence of low, intermediate and high levels of co-solutes. Food Hydrocol 18:783–794. doi:10.1016/j.foodhyd.2003.10.006 CrossRefGoogle Scholar
  17. 17.
    Rayment P, Ross-Murphy SB, Ellis PR (1998) Rheological properties of guar galactomannan and rice starch mixtures. II. Creep measurements. Carb Polym 35:55–63. doi:10.1016/S0144-8617(97)00231-2 CrossRefGoogle Scholar
  18. 18.
    Schramm G (1994) A practical approach to research to rheology and rheometry. Gerbrueder HAAKE GmbH, Federal Republic of Germany, pp 7–27Google Scholar
  19. 19.
    Steffe JF (1996) Rheological methods in food process engineering. Freman Press, USA, p 418Google Scholar
  20. 20.
    Kelco Division of Merck, Co. Inc. (1995) Gellan gum: multifunctional polysaccharide for texturizing. Technical Monograph, San DiegoGoogle Scholar
  21. 21.
    Yánez-Fernández J, Ramos-Ramirez GE, Salazar-Montoya JA (2007) Rheological characterization of dispersions and emulsions used in the preparation of microcapsules obtained by interfacial polymerization containing Lactobacillus sp. Eur Food Res Technol 226:956–966. doi:10.1007/s00217-007-0617-9 Google Scholar
  22. 22.
    Kamimura Y, Kurumada K, Asaba K, Ba-no H, Kambara H, Hiro M (2006) Evaluation of activation energy of flow viscous of sol-gel derived phenyl-modified silica glass. J Non Crys Sol 352:3175–3178. doi:10.1016/j.jnoncrysol.2006.05.020 CrossRefGoogle Scholar
  23. 23.
    Eyring H (1936) Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J Chem Phys 4:283–291CrossRefGoogle Scholar
  24. 24.
    Ibarz A, Pagán J, Gutierrez J, Vicente M (1989) Rheological properties of clarified pear juices concentrates. J Food Eng 10:57–63. doi:10.1016/0260-8774(89)90020-4 CrossRefGoogle Scholar
  25. 25.
    Khalil KE, Ramakrishna P, Nanjundaswamy AM, Patwardham MV (1989) Rheological behaviour of clarified banana juice: effect of temperature and concentration. J Food Eng 10:231–240. doi:10.1016/0260-8774(89)90028-9 CrossRefGoogle Scholar
  26. 26.
    Ibarz A, Pagán J, Miguelsanz R (1992) Rheology of clarified fruit juices. II. Blackcurrant juices. J Food Eng 15:63–73. doi:10.1016/0260-8774(92)90040-D CrossRefGoogle Scholar
  27. 27.
    Fichtali J, Van de Voort FR, Doyon GJ (1993) A rheological model for sodium caseinate. J Food Eng 19:203–211CrossRefGoogle Scholar
  28. 28.
    Hernandez E, Chen CS, Johnson J, Carter RD (1995) Viscosity changes in orange juice after ultra-filtration and evaporation. J Food Eng 25:387–396. doi:10.1016/0260-8774(94)00013-Y CrossRefGoogle Scholar
  29. 29.
    Jiménez-Avalos HA, Ramos-Ramírez EG, Salazar-Montoya JA (2005) Viscoelastic characterization of gum arabic and maize starch mixture using the Maxwell model. Carb Polym 62:11–18. doi:10.1016/j.carbpol.2005.07.007 CrossRefGoogle Scholar
  30. 30.
    Lee KY, Shim J, Bae I, Cha J, Park CS, Lee HG (2003) Characterization of gellan/gelatin mixed solutions and gels. Leb-Wiss U Technol 36:759–802. doi:10.1016/S0023-6438(03)00116-6 Google Scholar
  31. 31.
    Miyoshi E, Nishimari K (1999) Non Newtonian flow behaviour of gellan gum aqueous solutions. Colloid Polym Sci 277:727–734. doi:10.1007/s003960050446 CrossRefGoogle Scholar
  32. 32.
    Butler MF, Glaser N, Weaver A, Kirkland M, Heppenstall M (2006) Calcium carbonate crystallization in the presence of biopolymers. Cryst Growth Design. 6:781–794. doi:10.1021/cg050436w CrossRefGoogle Scholar
  33. 33.
    Butler MF, Frith WJ, Rawlins C, Weaver AC, Heppenstall M (2009) Hollow calcium carbonate microsphere formation in the presence of biopolymers and additives. Cryst Growth Design 9:534–545. doi:10.1021/cg8008333 CrossRefGoogle Scholar
  34. 34.
    Alloncle M, Lefebvre J, Llamas G, Doublier J (1989) A rheological characterization of cereal starch-galactomannan mixtures. Cereal Chem 66:90–93Google Scholar
  35. 35.
    Chandrasekaran R, Thailambal V (1990) The influence of calcium ion, acetate and glicerate groups on the gellan double-helix. Carb Polym 12:431–442. doi:10.1016/0144-8617(90)90092-7 CrossRefGoogle Scholar
  36. 36.
    Nickerson M, Paulson A, Speers R (2003) Rheological properties of gellan solutions: effect of calcium ions and the temperature on pre-gel formation. Food Hydrocol 17:577–583. doi:10.1016/S0268-005X(02)00075-9 CrossRefGoogle Scholar
  37. 37.
    Matsukawa S, Watanabe T (2007) Gelation mechanism and network structure of mixed solution of low and high acyl gellan studied by dynamic viscoelasticity, CD and NMR measurements. Food Hydrocol 21:1355–1361. doi:10.1016/j.foodhyd.2006.10.013 CrossRefGoogle Scholar
  38. 38.
    Sanderson GR, Clark RC (1983) Laboratory-produced microbial polysaccharide has many potential food applications as a gelling, stabilizing and texturing agent. Food Technol 37:63–70Google Scholar
  39. 39.
    Grasdalen H, SmidrØd O (1987) Gelation of gellan gum. Carb Polym 7:371–393. doi:10.1016/0144-8617(87)90004-X CrossRefGoogle Scholar
  40. 40.
    Chandrasekaran R, Radha A (1995) Molecular architectures and functional properties of gellan gum and related polysaccharides. Trends Food Sci Technol 6:143–147. doi:10.1016/S0924-2244(00)89022-6 CrossRefGoogle Scholar
  41. 41.
    Ré MI (1998) Microencapsulation by spray drying. Dry Technol 16:1195–1236CrossRefGoogle Scholar
  42. 42.
    Sworn G, Kasapis S (1998) The use of Arrhenius and WLF kinetics to rationalize the mechanical spectrum in high sugar gellan system. Carb Res 309:353–361. doi:10.1016/S0008-6215(98)00153-0 CrossRefGoogle Scholar
  43. 43.
    Zuritz CA, Muñoz E, Mathey HH, Pérez EH, Gascon A, Rubio LA, Carullo AA, Chernikoff RE, Cabeza MS (2005) Density, viscosity and coefficient of thermal expansion of clear grape juice at different soluble solid concentration and temperatures. J Food Eng 71:143–149. doi:10.1016/j.jfoodeng.2004.10.026 CrossRefGoogle Scholar
  44. 44.
    Giboreau A, Cuvelier G, Lunay B (1994) Rheological behavior of three biopolymers/water system, with emphasis on yield stress and viscoelastic properties. J Text Stud 25:119–137. doi:10.1111/j.1745-4603.1994.tb01321.x CrossRefGoogle Scholar
  45. 45.
    Rodriguez AI, Durand S, Garnier C, Tecante A, Doublier JL (2003) Rheology-structure properties of gellan systems: evidence of network formation at low gellan concentrations. Food Hydrocol 17:621–628. doi:10.1016/S0268-005X(02)00123-6 CrossRefGoogle Scholar
  46. 46.
    Yoshimura M, Takaya T, Nishinari K (1998) Rheological studies on mixtures of starch and konjac-Glucomannan. Carb Polym 35:71–79. doi:10.1016/S0144-8617(97)00232-4 CrossRefGoogle Scholar
  47. 47.
    Rodríguez AC, Chiappeta D, Széliga ME, Fernandez A, Bregni C (2003) Microparticulas de alginato conteniendo paracetamol. Ars Phar 44:333–342Google Scholar
  48. 48.
    Sánchez B, Ramírez M, Tecante A (2008) Rheological description of the disorder-order transition of gellan without added counter-ions. Food Eng Integ Appr: 307–313. doi: 10.1007/978-0-387-75430-7_20
  49. 49.
    Rodríguez IA (2004) Reología y estructura de las mezclas formadas por los polisacáridos almidón de maíz ceroso y gelana. Tesis de Doctorado. Facultad de Química, Universidad Nacional Autónoma de México, México DFGoogle Scholar
  50. 50.
    Kasapis S, Giannouli P, Hember M, Evageliou V, Poulard C, Tort B (1999) Structural aspect and phase behavior in deacylated and hign acyl gellan systems. Carb Polym 38:145–154. doi:10.1016/S0144-8617(98)00116-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Rafael Emilio González-Cuello
    • 1
  • Emma Gloria Ramos-Ramírez
    • 1
  • Alfredo Cruz-Orea
    • 2
  • Juan Alfredo Salazar-Montoya
    • 1
  1. 1.Department of Biotechnology and BioengineeringCINVESTAV-IPNDF, MéxicoMexico
  2. 2.Department of PhysicsCINVESTAV-IPNDF, MéxicoMexico

Personalised recommendations