Skip to main content

Advertisement

Log in

A GC–MS-based metabonomic investigation of blood serum from irritable bowel syndrome patients undergoing intervention with acidified milk products

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In the present study, the use of gas chromatography mass spectrometry (GC–MS)-based metabonomics to characterize blood serum in an intervention study of patients suffering from the common gastrointestinal disorder irritable bowel syndrome (IBS) was investigated. The patients included in the study consumed an acidified milk product with (n = 30) or without probiotics (n = 31) (Lactobacillus paracasei F19, Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12) for an 8-week period, and blood serum samples were collected before and after the intervention. Acidified milk is commonly used as a delivering vector for probiotics in commercial consumer settings. The serum samples were extracted and derivatized using N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA), and GC–MS analysis was carried out. Multivariate data analysis including principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), and S-plot was applied on the obtained GC–MS data, which revealed higher serum lactate, glutamine, proline creatinine/creatine, and aspartic acid levels and lower serum glucose levels after the intervention period for both treatment groups. Consequently, the present study indicated an effect of acidified milk consumption on the plasma metabolite profile, which was independent of a concomitant intake of probiotics. In addition, the present study demonstrates that GC–MS is a useful analytical technique for metabonomics studies of blood serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11):1181–1189

    Article  CAS  Google Scholar 

  2. Xiayan L, Legido-Quigley C (2008) Advances in separation science applied to metabonomics. Electrophoresis 29(18):3724–3736

    Article  Google Scholar 

  3. Weljie AM, Dowlatabadi R, Miller BJ, Vogel HJ, Jirik FR (2007) An inflammatory arthritis-associated metabolite biomarker pattern revealed by 1H NMR spectroscopy. J Proteome Res 6(9):3456–3464

    Article  CAS  Google Scholar 

  4. Malmendal A, Overgaard J, Bundy JG, Sorensen JG, Nielsen NC, Loeschcke V, Holmstrup M (2006) Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila. Am J Physiol Regul Integr Comp Physiol 291(1):R205–R212

    Article  CAS  Google Scholar 

  5. Pedersen KS, Kristensen TN, Loeschcke V, Petersen BO, Duus JO, Nielsen NC, Malmendal A (2008) Metabolomic signatures of inbreeding at benign and stressful temperatures in Drosophila melanogaster. Genetics 180(2):1233–1243

    Article  CAS  Google Scholar 

  6. Janis MT, Laaksonen R, Oresic M (2008) Metabolomic strategies to identify tissue-specific effects of cardiovascular drugs. Expert Opin Drug Metab Toxicol 4(6):665–680

    Article  CAS  Google Scholar 

  7. Hines A, Oladiran GS, Bignell JP, Stentiford GD, Viant MR (2007) Direct sampling of organisms from the field and knowledge of their phenotype: key recommendations for environmental metabolomics. Environ Sci Technol 41(9):3375–3381

    Article  CAS  Google Scholar 

  8. Bertram HC, Hoppe C, Petersen BO, Duus JO, Molgaard C, Michaelsen KF (2007) An NMR-based metabonomic investigation on effects of milk and meat protein diets given to 8-year-old boys. Br J Nutr 97(4):758–763

    Article  CAS  Google Scholar 

  9. Bertram HC, Duarte IF, Gil AM, Knudsen KE, Laerke HN (2007) Metabolic profiling of liver from hypercholesterolemic pigs fed rye or wheat fiber and from normal pigs. High-resolution magic angle spinning 1H NMR spectroscopic study. Anal Chem 79(1):168–175

    Article  CAS  Google Scholar 

  10. Bertram HC, Bach Knudsen KE, Serena A, Malmendal A, Nielsen NC, Frette XC, Andersen HJ (2006) NMR-based metabonomic studies reveal changes in the biochemical profile of plasma and urine from pigs fed high-fibre rye bread. Br J Nutr 95(5):955–962

    Article  CAS  Google Scholar 

  11. Lenz EM, Wilson ID (2007) Analytical strategies in metabonomics. J Proteome Res 6(2):443–458

    Article  CAS  Google Scholar 

  12. Jiye A, Trygg J, Gullberg J, Johansson AI, Jonsson P, Antti H, Marklund SL, Moritz T (2005) Extraction and GC/MS analysis of the human blood plasma metabolome. Anal Chem 77(24):8086–8094

    Article  Google Scholar 

  13. Pasikanti KK, Ho PC, Chan EC (2008) Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. J Chromatogr B Analyt Technol Biomed Life Sci 871(2):202–211

    Article  CAS  Google Scholar 

  14. Qiu Y, Su M, Liu Y, Chen M, Gu J, Zhang J, Jia W (2007) Application of ethyl chloroformate derivatization for gas chromatography-mass spectrometry based metabonomic profiling. Anal Chim Acta 583(2):277–283

    Article  CAS  Google Scholar 

  15. Gionchetti P, Rizzello F, Helwig U, Venturi A, Lammers KM, Brigidi P, Vitali B, Poggioli G, Miglioli M, Campieri M (2003) Prophylaxis of pouchitis onset with probiotic therapy: a double-blind, placebo-controlled trial. Gastroenterology 124(5):1202–1209

    Article  Google Scholar 

  16. Gosselink MP, Schouten WR, van Lieshout LM, Hop WC, Laman JD, Ruseler-van Embden JG (2004) Delay of the first onset of pouchitis by oral intake of the probiotic strain Lactobacillus rhamnosus GG. Dis Colon Rectum 47(6):876–884

    Article  Google Scholar 

  17. Kajander K, Hatakka K, Poussa T, Farkkila M, Korpela R (2005) A probiotic mixture alleviates symptoms in irritable bowel syndrome patients: a controlled 6-month intervention. Aliment Pharmacol Ther 22(5):387–394

    Article  CAS  Google Scholar 

  18. Kajander K, Myllyluoma E, Rajilic-Stojanovic M, Kyronpalo SS, Rasmussen M, Jarvenpaa SS, Zoetendal EG, de Vos WM, Vapaatalo H, Korpela R (2007) Clinical trial: multispecies probiotic supplementation alleviates the symptoms of IBS and stabilises intestinal microbiota. Aliment Pharmacol Ther 27(1):48–57

    Article  Google Scholar 

  19. Kim HJ, Camilleri M, McKinzie S, Lempke MB, Burton DD, Thomforde GM, Zinsmeister AR (2003) A randomized controlled trial of a probiotic, VSL#3, on gut transit and symptoms in diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther 17(7):895–904

    Article  CAS  Google Scholar 

  20. Niedzielin K, Kordecki H, Birkenfeld B (2001) A controlled, double-blind, randomized study on the efficacy of Lactobacillus plantarum 299 V in patients with irritable bowel syndrome. Eur J Gastroenterol Hepatol 13(10):1143–1147

    Article  CAS  Google Scholar 

  21. Akehurst R, Kaltenthaler E (2001) Treatment of irritable bowel syndrome: a review of randomised controlled trials. Gut 48(2):272–282

    Article  CAS  Google Scholar 

  22. Drossman DA, Camilleri M, Mayer EA, Whitehead WE (2002) AGA technical review on irritable bowel syndrome. Gastroenterology 123(6):2108–2131

    Article  Google Scholar 

  23. Foxx-Orenstein A (2006) IBS—review and what’s new. MedGenMed 8(3):20

    Google Scholar 

  24. Ersryd A, Posserud I, Abrahamsson H, Simren M (2007) Subtyping the irritable bowel syndrome by predominant bowel habit: Rome II versus Rome III. Aliment Pharmacol Ther 26(6):953–961

    Article  CAS  Google Scholar 

  25. Francis CY, Morris J, Whorwell PJ (1997) The irritable bowel severity scoring system: a simple method of monitoring irritable bowel syndrome and its progress. Aliment Pharmacol Ther 11(2):395–402

    Article  CAS  Google Scholar 

  26. Pedersen SMM, Nielsen NC, Andersen HJ, Olsson J, Simrén M, Ohman L, Svensson U, Malmendal A, Bertram HC (2010) The serum metabolite response to diet intervention with probiotic acidified milk in irritable bowel syndrome patients is indistinguishable from that of non-probiotic acidified milk by 1H NMR-based metabonomic analysis. Nutrients 2(11):1141–1155

    Article  CAS  Google Scholar 

  27. Simren M, Ohman L, Olsson J, Svensson U, Ohlson K, Posserud I, Strid H (2010) Clinical trial: the effect of a fermented milk containing three probiotic bacteria in patients with irritable bowel syndrome (IBS)—a randomized, double-blind, controlled study. Aliment Pharmacol Ther 31(2):218–227

    CAS  Google Scholar 

  28. Trygg J, Wold S (2002) Orthogonal projections to latent structures (O-PLS). J Chemometr 16(3):119–128

    Article  CAS  Google Scholar 

  29. Keun HC, Ebbels TMD, Antti H, Bollard ME, Beckonert O, Holmes E, Lindon JC, Nicholson JK (2003) Improved analysis of multivariate data by variable stability scaling: application to NMR-based metabolic profiling. Anal Chim Acta 490(1–2):265–276

    Article  CAS  Google Scholar 

  30. Wiklund S, Johansson E, Sjostrom L, Mellerowicz EJ, Edlund U, Shockcor JP, Gottfries J, Moritz T, Trygg J (2008) Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 80(1):115–122

    Article  CAS  Google Scholar 

  31. Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80(3):1107–1213

    CAS  Google Scholar 

  32. Enck P, Klosterhalfen S (2005) The placebo response in functional bowel disorders: perspectives and putative mechanisms. Neurogastroenterol Motil 17(3):325–331

    Article  CAS  Google Scholar 

  33. Kreisberg RA (1980) Lactate homeostasis and lactic acidosis. Ann Intern Med 92(2 Pt 1):227–237

    CAS  Google Scholar 

  34. Pitz M, Cheang M, Bernstein CN (2005) Defining the predictors of the placebo response in irritable bowel syndrome. Clin Gastroenterol Hepatol 3(3):237–247

    Article  Google Scholar 

  35. Hoveyda N, Heneghan C, Mahtani KR, Perera R, Roberts N, Glasziou P (2009) A systematic review and meta-analysis: probiotics in the treatment of irritable bowel syndrome. BMC Gastroenterol 9:15

    Article  Google Scholar 

  36. Daly M (2003) Sugars, insulin sensitivity, and the postprandial state. Am J Clin Nutr 78(4):865S–872S

    CAS  Google Scholar 

  37. Daly ME, Vale C, Walker M, Littlefield A, Alberti KG, Mathers JC (1998) Acute effects on insulin sensitivity and diurnal metabolic profiles of a high-sucrose compared with a high-starch diet. Am J Clin Nutr 67(6):1186–1196

    CAS  Google Scholar 

  38. DeFronzo RA, Ferrannini E (1982) Influence of plasma glucose and insulin concentration on plasma glucose clearance in man. Diabetes 31(8 Pt 1):683–688

    CAS  Google Scholar 

  39. Schenk S, Davidson CJ, Zderic TW, Byerley LO, Coyle EF (2003) Different glycemic indexes of breakfast cereals are not due to glucose entry into blood but to glucose removal by tissue. Am J Clin Nutr 78(4):742–748

    CAS  Google Scholar 

  40. Ostman EM, Liljeberg Elmstahl HG, Bjorck IM (2001) Inconsistency between glycemic and insulinemic responses to regular and fermented milk products. Am J Clin Nutr 74(1):96–100

    CAS  Google Scholar 

  41. Watford M (2008) Glutamine metabolism and function in relation to proline synthesis and the safety of glutamine and proline supplementation. J Nutr 138(10):2003S–2007S

    CAS  Google Scholar 

  42. Bertolo RF, Brunton JA, Pencharz PB, Ball RO (2003) Arginine, ornithine, and proline interconversion is dependent on small intestinal metabolism in neonatal pigs. Am J Physiol Endocrinol Metab 284(5):E915–E922

    CAS  Google Scholar 

  43. Fujita T, Yanaga K (2007) Association between glutamine extraction and release of citrulline and glycine by the human small intestine. Life Sci 80(20):1846–1850

    Article  CAS  Google Scholar 

  44. Burtscher M, Brunner F, Faulhaber M, Hotter B, Likar R (2005) The prolonged intake of l-arginine-l-aspartate reduces blood lactate accumulation and oxygen consumption during submaximal exercise. J Sports Sci Med 4(3):314–322

    Google Scholar 

  45. Lancha AH Jr, Recco MB, Abdalla DS, Curi R (1995) Effect of aspartate, asparagine, and carnitine supplementation in the diet on metabolism of skeletal muscle during a moderate exercise. Physiol Behav 57(2):367–371

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge The Danish Dairy Council for funding the project “A nutrigenomic approach in the elucidation of basic molecular mechanisms for the action of probiotic bacteria”. In addition, the authors acknowledge support from the Danish National Research Foundation, Arla Foods and the Interdisciplinary Nanoscience Center (iNANO) at Aarhus University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanne C. Bertram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, S.M.M., Nebel, C., Nielsen, N.C. et al. A GC–MS-based metabonomic investigation of blood serum from irritable bowel syndrome patients undergoing intervention with acidified milk products. Eur Food Res Technol 233, 1013–1021 (2011). https://doi.org/10.1007/s00217-011-1599-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-011-1599-1

Keywords

Navigation