Skip to main content
Log in

Cold-adapted structural properties of trypsins from walleye pollock (Theragra chalcogramma) and Arctic cod (Boreogadus saida)

  • Original paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Complementary DNA clones encoding trypsins were isolated from pyloric ceca of cold-adapted fish, walleye pollock (Theragra chalcogramma) (WP-T) and Arctic cod (Boreogadus saida) (AC-T). The isolated full-length cDNA clones of WP-T and AC-T were 852 and 860 bp, respectively, and both cDNAs were contained an open reading frame of 726 bp. WP-T and AC-T seemed to be synthesized as preproenzyme that contains a signal peptide, an activation peptide, and a mature trypsin. Although the amino acid sequence identities of WP-T and AC-T to that of bovine trypsin were 64 and 63%, respectively, they completely conserved the structural features for catalytic function of trypsin. On the other hand, WP-T and AC-T possessed the four Met residues (Met135, Met145, Met175 and Met242) in their molecules and the deletion of Tyr151 and substitution of Pro152 for Gly in their autolysis loops when aligned with the sequences of tropical-zone fish and bovine trypsins. In addition, the contents of charged amino acid residues at the N-terminal regions (positions 20–50) of WP-T and AC-T were extremely higher than those of other fish and bovine trypsins. Moreover, one amino acid (Asn72) and two amino acids (Asn72 and Val75) coordinating with Ca2+ in bovine trypsin were exchanged for another amino acids in WP-T (His) and AC-T (His and Glu), respectively, and the contents of negative charged amino acids at their Ca2+-binding regions were lower than those of tropical-zone fish and bovine trypsins. Therefore, it was considered that these structural characteristics of WP-T and AC-T are closely related to their lower thermostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rypniewski WR, Perrakis A, Vorgias CE, Wilson KS (1994) Evolutionary divergence and conservation of trypsin. Protein Eng 7:57–64

    Article  CAS  Google Scholar 

  2. Stroud RM, Kay LM, Dickerson RE (1974) The structure of bovine trypsin: electron density maps of the inhibited enzyme at 5 A and at 2.7 A resolution. J Mol Biol 83:185–208

    Google Scholar 

  3. Hedstrom L, Szilagyi L, Rutter WJ (1992) Converting trypsin to chymotrypsin: the role of surface roops. Science 255:1249–1253

    Article  CAS  Google Scholar 

  4. Hedstrom L, Perona J, Rutter WJ (1994) Converting trypsin to chymotrypsin: residue 172 is a substrate specificity determinant. Biochemistry 33:8757–8763

    Article  CAS  Google Scholar 

  5. Hedstrom L, Lin T, Fast W (1996) Hydrophobic interactions control zymogen activation in the trypsin family of serine proteases. Biochemistry 35:4515–4523

    Article  CAS  Google Scholar 

  6. Pasternak A, Liu X, Lin T, Hedstrom L (1998) Activating a zymogen with out proteolytic processing: mutation of Lys15 and Asn194 activates trypsinogen. Biochemistry 37:16201–16210

    Article  CAS  Google Scholar 

  7. Szabo E, Bocskei Z, Naray-Szabo G, Graf L (1999) The three-dimensional structure of Asp189Ser trypsin provides evidence for an inherent structural plasticity of the proteases. Eur J Biochem 263:20–26

    Article  CAS  Google Scholar 

  8. Hjelmeland K, Raa J (1982) Characteristics of two trypsin type isozymes isolated from the Arctic fish capelin (Mallotus villosus). Comp Biochem Physiol 71B:557–562

    CAS  Google Scholar 

  9. Simpson BK, Haard NF (1984) Trypsin from Greenland cod, Gadus ogac. Isolation and comparative properties. Comp Biochem Physiol 79B:613–622

    CAS  Google Scholar 

  10. Asgeirsson B, Fox JW, Bjarnason JB (1989) Purification and characterization of trypsin from the poikilotherm Gadus morhua. Eur J Biochem 180:85–94

    Article  CAS  Google Scholar 

  11. Kristjansson MM (1991) Purification and characterization of trypsin from the pyloric caeca of rainbow trout (Oncorhynchus mykiss). J Agric Food Chem 39:1738–1742

    Article  CAS  Google Scholar 

  12. Outzen H, Berglund GI, Smalas AO, Willassen NP (1996) Temperature and pH sensitivity of trypsins from Atlantic salmon (Salmo salar) in comparison with bovine and porcine trypsin. Comp Biochem Physiol 115B:33–45

    CAS  Google Scholar 

  13. Simpson BK, Haard NF (1987) Cold-adapted enzymes from fish. In: Knorr D (ed) Food biotechnology. Marcel Dekker, New York, pp 495–528

    Google Scholar 

  14. Bjarnason JB (2000) Fish serine proteases and their pharmaceutical and cosmetic use. Patent PCT, WO 00/78332 A2, 28 Dec 2000

  15. Bjarnason JB, Benediktsson B (2001) Protein hydrolysates produced with the use of marine proteases. Patent PCT, WO 01/28353 A2, 26 Apr 2001

  16. Kishimura H, Hayashi K, Miyashita Y, Nonami Y (2005) Characteristics of two trypsin isozymes from the viscera of Japanese anchovy (Engraulis japonica). J Food Biochem 29:459–469

    Article  CAS  Google Scholar 

  17. Kishimura H, Hayashi K, Miyashita Y, Nonami Y (2006) Characteristics of trypsins from the viscera of true sardine (Sardinops melanostictus) and the pyloric ceca of arabesque greenling (Pleuroprammus azonus). Food Chem 97:65–70

    Article  CAS  Google Scholar 

  18. Kishimura H, Tokuda Y, Klomklao S, Benjakul S, Ando S (2006) Enzymatic characteristics of trypsin from the pyloric ceca of spotted mackerel (Scomber australasicus). J Food Biochem 30:466–477

    Article  CAS  Google Scholar 

  19. Kishimura H, Tokuda Y, Klomklao S, Benjakul S, Ando S (2006) Comparative study on enzymatic characteristics of trypsins from the pyloric ceca of yellow tail (Seriola quinqueradiata) and brown hakeling (Physiculus japonicus). J Food Biochem 30:521–534

    Article  CAS  Google Scholar 

  20. Kishimura H, Tokuda Y, Yabe M, Klomklao S, Benjakul S, Ando S (2007) Trypsins from the pyloric ceca of jacopever (Sebastes schlegeli) and elkhorn sculpin (Alcichthys alcicornis): isolation and characterization. Food Chem 100:1490–1495

    Article  CAS  Google Scholar 

  21. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK, Saeki H (2006) Trypsins from yellowfin tuna (Thunnus albacores) spleen: purification and characterization. Comp Biochem Physiol 144B:47–56

    CAS  Google Scholar 

  22. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK (2006) Purification and characterization of trypsin from spleen of tongol tuna (Thunnus tonggol). J Agric Food Chem 54:5617–5622

    Article  CAS  Google Scholar 

  23. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK (2007) Purification and characterization of trypsins from skipjack tuna (Katsuwonus pelamis) spleen. Food Chem 100:1580–1589

    Article  CAS  Google Scholar 

  24. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK (2007) Trypsin from the pyloric ceca of bluefish (Pomatomus saltatrix). Comp Biochem Physiol 148B:382–389

    CAS  Google Scholar 

  25. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK (2007) A 29 kDa protease from the digestive glands of Atlantic bonito (Sarda sarda): recovery and characterization. J Agric Food Chem 55:4548–4553

    Article  CAS  Google Scholar 

  26. Kishimura H, Klomklao S, Benjakul S, Chun B-S (2008) Characteristics of trypsin from the pyloric ceca of walleye pollock (Theragra chalcogramma). Food Chem 106:194–199

    Article  CAS  Google Scholar 

  27. Fuchise T, Kishimura H, Sekizaki H, Nonami Y, Kanno G, Klomklao S, Benjakul S, Chun B-S (2009) Purification and characteristics of cold-zone fish trypsin, Pacific cod (Gadus macrocephalus) and saffron cod (Eleginus gracilis). Food Chem 116:611–616

    Article  CAS  Google Scholar 

  28. Kanno G, Kishimura H, Ando S, Nalinanon S, Klomklao S, Benjakul S, Chun B-S, Saeki H (2011) Structural properties of trypsin from cold-adapted fish, arabesque greenling (Pleurogrammus azonus). Eur Food Res Technol 232:381–388

    Article  CAS  Google Scholar 

  29. Ahsan MN, Funabara D, Watabe S (2001) Molecular cloning and characterization of two isoforms of trypsinogen from anchovy pyloric ceca. Mar Biotechnol 3:80–90

    Article  CAS  Google Scholar 

  30. Gudmundsdottir A, Gudmundsdottir E, Oskarsson S, Bjarnason JB, Eakin AK, Craik CS (1993) Isolation and characterization of cDNAs from Atlantic cod encoding two different forms of trypsinogen. Eur J Biochem 217:1091–1097

    Article  CAS  Google Scholar 

  31. Genicot S, Rentier-Delrue F, Edwards D, Vanbeeumen J, Gerday C (1996) Trypsin and trypsinogen from Antarctic fish: molecular basis of cold adaptation. Biochim Biophys Acta 1298:45–57

    Article  CAS  Google Scholar 

  32. Ruan G-L, Li Y, Gao Z-X, Wang H-L, Wang W-M (2010) Molecular characterization of trypsinogens and development of trypsinogen gene expression and tryptic activities in grass carp (Ctenopharyngodon idellus) and topmouth culter (Culter alburnus). Comp Biochem Physiol Part B 155:77–85

    Article  Google Scholar 

  33. Watson MEE (1984) Compilation of published signal sequences. Nucleic Acids Res 12:5145–5164

    Article  CAS  Google Scholar 

  34. Louvard MN, Puigserver A (1974) On bovine and porcine anionic trypsinogens. Biochim Biophys Acta 371:177–185

    CAS  Google Scholar 

  35. Huerou IL, Wicker C, Guilloteau P, Toullec R, Puigserver A (1990) Isolation and nucleotide sequence of cDNA clone for bovine pancreatic anionic trypsinogen: structural identity within the trypsin family. Eur J Biochem 193:767–773

    Article  Google Scholar 

  36. Krem MM, Rose T, Cera ED (1999) The C-terminal sequence encodes function in serine proteases. J Biol Chem 274:28063–28066

    Article  CAS  Google Scholar 

  37. Leiros H-KS, Willassen NP, Smalas AO (2000) Structural comparison of psychrophilic and mesophilic trypsins: elucidating the molecular basis of cold-adaptation. Eur J Biochem 267:1039–1049

    Article  CAS  Google Scholar 

  38. Gable D, Kasche V (1973) Autolysis of β-trypsin: influences of calcium ions and heat. Acta Chem Scand 27:1971–1981

    Article  Google Scholar 

  39. Kanno G, Yamaguchi T, Kishimura H, Yamaha E, Saeki H (2010) Purification and characteristics of trypsin from masu salmon (Oncorhynchus masou) cultured in fresh-water. Fish Physiol Biochem 36:637–645

    Article  CAS  Google Scholar 

  40. Walsh KA (1970) Trypsinogens and trypsins of various species. Methods Enzymol 19:41–63

    Article  Google Scholar 

  41. Bode W, Schwager P (1975) The single calcium-binding site of crystalline β-trypsin. FEBS Lett 56:139–143

    Article  CAS  Google Scholar 

  42. Male R, Lorens LB, Smalas AO, Torrissen KR (1995) Molecular cloning and characterization of anionic and cationic variants of trypsin from Atlantic salmon. Eur J Biochem 232:677–685

    Article  CAS  Google Scholar 

  43. Hartley BS, Kauffman DL (1966) Corrections to the amino acid sequence of bovine chymotrypsinogen A. Biochem J 101:229–231

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank crew and officers of the T/S Oshoro Maru, Hokkaido University, for in collecting Arctic cod. This research was partly supported by the grant from HOKUSUI Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Kishimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanno, G., Kishimura, H., Yamamoto, J. et al. Cold-adapted structural properties of trypsins from walleye pollock (Theragra chalcogramma) and Arctic cod (Boreogadus saida). Eur Food Res Technol 233, 963–972 (2011). https://doi.org/10.1007/s00217-011-1592-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-011-1592-8

Keywords

Navigation