Skip to main content

Assessment of antimicrobial activity of coffee brewed in three different ways from different origins


The antimicrobial effect against pathogens such as Staphylococcus aureus, Enterecoccus faecalis, Listeria monocytogenes, Pseudomonas aeruginosa, Escherichia coli and Salmonella choleraesius was determined in four types of coffee (Coffea arabica L. cv. Colombia, decaffeinated cv. Colombia, cv. Ethiopia and cv. Kenya). Coffee was seen to have significant activity against the growth of food spoilage bacteria. Among the Gram-positive bacteria, coffee was strongly active against S. aureus, moderately active against L. monocytogenes and had a slightly inhibitory effect against E. faecalis. However, coffee samples were found to be less active against Gram-negative bacteria. The results show that espresso Colombia coffee has better antimicrobial activity than filter and Italian coffee with significant differences (p < 0.05). Taking into account the origin, there were significant differences (p < 0.05) between Kenya and decaffeinated Colombia, on the one hand, and Ethiopia and Colombia coffee, on the other, the two last showing the highest antimicrobial activity. The antimicrobial activity of the coffee from different origins studied in this paper increased with concentration. Typical coffee compounds were also analysed, and only caffeic and chlorogenic acids showed any inhibitory effect against the growth of all the analysed bacteria. The antibacterial properties of coffee means that it has a promising potential as natural food ingredient to extend the shelf life of foods such as cake, cookies or biscuits, coffee flavoured with shakes, yoghurt.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Kumar R, Kumar MA, Dubey NK, Tripathi YB (2007) Evaluation of chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. Int J Food Microb 115:159–164

    Article  CAS  Google Scholar 

  2. 2.

    Gulluce M, Sahin F, Sokmen M, Ozer H, Daferera D, Sokmen A, Polissiou M, Adiguzel A, Ozkan H (2007) Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L.ssp. longifolia. Food Chem 103:1449–1456

    Article  CAS  Google Scholar 

  3. 3.

    Omidbeygi M, Barzegar M, Hamidi Z, Naghdibadi H (2007) Antifungal activity of thyme, summer savory and clove essential oils against Aspergillus flavus in liquid medium and tomato paste. Food Control 18:1518–1523

    Article  CAS  Google Scholar 

  4. 4.

    Jayaprakasha GK, Selvi T, Sakariah KK (2003) Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res Int 36:117–122

    Article  CAS  Google Scholar 

  5. 5.

    El Malti J, Mountassif D, Amarouch H (2007) Antimicrobial activity of Elettaria cardamomum: toxicity, biochemical and histological studies. Food Chem 104:1560–1568

    Article  CAS  Google Scholar 

  6. 6.

    Werlein HD, Kutemeyer C, Schatton G, Hubbermann EM, Schwarz K (2005) Influence of elderberry and blackcurrant concentrates on the growth of microorganisms. Food Control 16:729–733

    Article  Google Scholar 

  7. 7.

    Wong PYY, Kitts DD (2006) Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chem 97:505–515

    Article  CAS  Google Scholar 

  8. 8.

    Tosi EA, Ré E, Ortega ME, Cazzoli AF (2007) Food preservative based on propolis: bacteriostatic activity of propolis polyphenols and flavonoids upon Escherichia coli. Food Chem 104:1025–1029

    Article  CAS  Google Scholar 

  9. 9.

    Rodriguez Vaquero MJ, Alberto MR, Manca de Nadra MC (2007) Antibacterial effect of phenolic compounds from different wines. Food Control 18:93–101

    Article  CAS  Google Scholar 

  10. 10.

    Parras P, Martínez-Tomé M, Jiménez AM, Murcia MA (2006) Antioxidant capacity of coffees of several origins brewed following three different procedures. Food Chem 102:582–592

    Article  Google Scholar 

  11. 11.

    Daglia M, Cuzzoni MT, Dacarro C (1994) Antibacterial activity of coffee. J Agric Food Chem 42:2270–2272

    Article  CAS  Google Scholar 

  12. 12.

    Dykes GA, Amarowicz R, Pegg RB (2003) Enhancement of nisin antibacterial activity by a bearberry (Arctostaphylos uva-ursi) leaf extract. Food Microb 20:211–216

    Article  CAS  Google Scholar 

  13. 13.

    Rufian-Henares JA, de la Cueva SP (2009) Antimicrobial activity of coffee melanoidins. A study of their metal-chelating properties. J Agric Food Chem 57:432–438

    Article  CAS  Google Scholar 

  14. 14.

    Dogazaki C, Shindo T, Furuhata K, Furuyama M (2002) Identification of chemical an tibacterial components against Legionella pneumophila in a coffee beverage. J Pharm Soc Jpn 122:487–494

    Google Scholar 

  15. 15.

    Rodriguez Vaquero MJ, Alberto MR, Manca de Nadra MC (2007) Influence of phenolic compounds from wines on the growth of Listeria monocytogenes. Food Control 18:587–593

    Article  CAS  Google Scholar 

  16. 16.

    Rufian-Henares JA, Morales FJ (2008) Antimicrobial activity of melanoidins against Escherichia coli is mediated by a membrane-damage mechanism. J Agric Food Chem 56:2357–2362

    Article  Google Scholar 

  17. 17.

    Stauder M, Papetti A, Mascherpa D, Schito AM, Gazzani G, Pruzzo C, Daglia M (2010) Antiadhesion and antibiofilm activities of high molecular weigh coffee components against Streptococcus mutnas. J Agric Food Chem 58:11662–11666

    Article  CAS  Google Scholar 

  18. 18.

    Lawrynowicz-Paciorek M, Kochman M, Piekarska K, Grochowska A, Windyga B (2007) The distribution of enterotoxin and enterotoxin—like genes in Staphylococcus aureus strains isolated from nasal carriers and food samples. Int J Food Microb 117:319–323

    Article  CAS  Google Scholar 

  19. 19.

    Handa-Miya S, Kimura B, Takahashi H, Sato M, Ishikawa T, Igarashi K, Fujii T (2007) Nonsense-mutated inlA and prfA not widely distributed in Listeria monocytogenes isolates from ready-to-eat seafood products in Japan. Int J Food Microb 117:312–318

    Article  CAS  Google Scholar 

  20. 20.

    Poeta P, Costa D, Rojo-Bezares B, Zarazaga M, Klibi N, Rodrigues J, Torres C (2007) Detection of antimicrobial activities and bacteriocin structural genes in faecal enterococci of wild animals. Microb Res 162:257–263

    Article  CAS  Google Scholar 

  21. 21.

    Sánchez J, Basanta A, Gómez-Sala B, Herranz C, Cintas LM, Hernández PE (2007) Antimicrobial and safety aspects, and biotechnological potential of bacteriocinogenic enterococci isolated from mallard ducks (Anas platyrhynchos). Int J Food Microb 117:295–305

    Article  Google Scholar 

  22. 22.

    Van Delden C, Iglewski BH (1998) Cell-to-cell Signaling and Pseudomonas aeruginosa Infections. Emerg Infect Dis 551–560

  23. 23.

    Matasyoh JC, Kiplimo JJ, Karubiu NM, Tiffany TP (2007) Chemical composition and antimicrobial activity pf essential oil of tarchonanthus camphoratus. Food Chem 101:1183–1187

    Article  CAS  Google Scholar 

  24. 24.

    Chang JM, Fang TJ (2007) Survival of Escherichia coli O157: H7 and Salmonella enterica serovars Typhimurium in iceberg lettuce and the antimicrobial effect of rice vinegar against E. Coli O157: H7. Food Microb 24:745–751

    Article  CAS  Google Scholar 

  25. 25.

    Prokopowich D, Blank G (1991) Microbiological evaluation of vegetable sprouts and seeds. J Food Prot 54:560–562

    Google Scholar 

  26. 26.

    Mueller HJ, Hinton J (1941) A protein-free medium for primary isolation of the Gonococcus and Meningococcus. Proc Soc Expt Biol Med 48:330–333

    CAS  Google Scholar 

  27. 27.

    Fraser JA, Sperber WH (1988) Rapid detection of Listeria spp., in food and environmental samples by esculin hydrolysis. J Food Prot 51:762–765

    Google Scholar 

  28. 28.

    MacConkey A (1950) Lactose-fermenting bacteria in faeces. J Hyg 8:333–379

    Google Scholar 

  29. 29.

    Chanwitheesuk A, Teerawutgulrag A, Kilburn JD, Rakariyatham N (2007) Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chem 100:1044–1048

    Article  CAS  Google Scholar 

  30. 30.

    Shakila RJ, Saravanakumar R, Aunto Princy Vyla S, Jeyasekaran G (2007) An improved microbial assay for the detection of chloramphenicol residues in shrimp tissues. Innov Food Sci Emerg Techn 8:515–518

    Article  CAS  Google Scholar 

  31. 31.

    Ozturk S, Ercisli S (2007) Antibacterial activity and chemical constitutions of Ziziphora clinopodioides. Food Control 18:535–540

    Article  CAS  Google Scholar 

  32. 32.

    Rufian-Henares JA, Morales FJ (2007) Functional properties of melanoidins: in vitro antioxidant, antimicrobial and antihypertensive activities. Food Res Int 40:995–1002

    Article  CAS  Google Scholar 

  33. 33.

    Daglia M, Cuzzoni MT, Dacarro C (1994) Antibacterial activity of coffee: relationship between biological activity and chemical markers. J Agric Food Chem 42:2273–2277

    Article  CAS  Google Scholar 

  34. 34.

    Almeida AAP, Farah A, Silva DAM, Nunan EA, Glória MBA (2006) Antibacterial activity of coffee extracts and selected coffee chemical compounds against Enterobacteria. J Agric Food Chem 54:8738–8743

    Article  CAS  Google Scholar 

  35. 35.

    Mokbel MS, Suganuma T (2006) Antioxidant and antimicrobial activities of the methanol extracts from pummelo (Citrus grandis Osbeck) fruit albedo tissues. Eur Food Techn 224:39–47

    Article  CAS  Google Scholar 

  36. 36.

    Murthy PS, Manonmani HK (2009) Physico-chemical, antioxidant and antimicrobial properties of Indian monsooned coffee. Eur Food Res Techn 229:645–650

    Article  CAS  Google Scholar 

  37. 37.

    Campos FM, Couto JA, Hogg TA (2003) Influence of phenolic acids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. J Appl Microb 94:167–174

    Article  CAS  Google Scholar 

  38. 38.

    Cirigliano MC, Farrel FJ, McKenna RT, Rothenberg PJ (2000) Flavoring materials for use in tea containing beverages. US Patent, US 6,022,576

  39. 39.

    Puupponen-Pimia R, Nohynek L, Meier C, Kahkonen M, Heinonen M, Hopia A, Oksman-Caldentey KM (2001) Antimicrobial properties of phenolic compounds from berries. J Appl Microb 90:494–507

    Article  CAS  Google Scholar 

  40. 40.

    Antonio AG, Moraes R, Perrone D, Maia LC, Santos KRN, Iorio NLP, Farah A (2009) Species, roasting degree and decaffeination influence the antibacterial activity of coffee against Streptococcus mutans. Food Chem. doi:10.1016/j.foochem.2009.05.063

  41. 41.

    Dall’Agnol R, Ferraz A, Bernardi AP, Albring D, Nör C, Sarmento L, Lamb L, Hass M, von Poser G, Schapoval ES (2003) Antimicrobial activity of some Hypericum species. Phytomedicine 10:511–516

    Article  Google Scholar 

  42. 42.

    Bounatirou S, Smiti S, Miguel MG, Faleiro L, Rejeb MN, Neffati M, Costa MM, Figueiredo AC, Barroso JG, Pedro LG (2007) Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chem 105:146–155

    Article  CAS  Google Scholar 

  43. 43.

    Elgayyar M, Draughon FA, Golden DA, Mount JR (2001) Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. J Food Prot 64:1019–1024

    CAS  Google Scholar 

  44. 44.

    FDA (Food and Drug Administration) (2010) Approved drug products with therapeutic equivalence evaluations, 30th edn. US Department of Health and Human Services, FDA, Rockville

    Google Scholar 

Download references


This work was funded by a project from the University of Murcia with Cafés Salzillo, Murcia, Spain.

Author information



Corresponding author

Correspondence to M. Antonia Murcia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martínez-Tomé, M., Jiménez-Monreal, A.M., García-Jiménez, L. et al. Assessment of antimicrobial activity of coffee brewed in three different ways from different origins. Eur Food Res Technol 233, 497 (2011).

Download citation


  • Antimicrobial
  • Coffee
  • Coffee preparation
  • Origins