Skip to main content

Advertisement

Log in

Effects on microbial inactivation and quality attributes in frozen lychee juice treated by supercritical carbon dioxide

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In this paper, we described the use of high-pressure carbon dioxide (HPCD) for the inactivation of natural microbes in lychee juice and evaluated its effects on lychee juice quality, compared to a conventional high-temperature, short-time (HTST) method. The HPCD treatments were carried out using a HPCD unit (8 MPa, 36 °C, 2 min), and the HTST was performed at 90 °C for 60 s. The results showed that five log reduction for yeasts and molds and total aerobic microorganisms occurred at 8 MPa for 2 min. And effects of the treatments on pH and concentrations of microbes, organic acids, titratable acidity (TA), total soluble solid (TSS), sugars, polyphenols, color, and free amino acids were also investigated. HPCD could efficiently maintain the concentration of polyphenols and original color at 8 MPa, 36 °C for 2 min. Insignificant differences in colors were observed between unprocessed and HPCD juices, while significant differences were observed between unprocessed and HTST juices. Furthermore, HTST decreased the total free amino acids, whereas HPCD caused a significant increase (increased by 45.92% at 8 MPa) (p < 0.05). The increase in total amino acids induced by HPCD treatment is beneficial for nutritional value of commercial ready-to-drink lychee juice. In general, HPCD treatment had less influence on the measured quality parameters of lychee juice than HTST treatment. Therefore, HPCD treatment could be a useful alternative to traditional heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jiang Y, Duan X, Joyce D, Zhang Z, Li J (2004) Advances in understanding of enzymatic browning in harvested litchi fruit. Food Chem 88(3):443–446

    Article  CAS  Google Scholar 

  2. Valverde MT, Marín-Iniesta F, Calvo L (2010) Inactivation of Saccharomyces cerevisiae in conference pear with high pressure carbon dioxide and effects on pear quality. J Food Eng 98(4):421–428

    Article  Google Scholar 

  3. Vikram VB, Ramesh MN, Prapulla SG (2005) Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. J Food Eng 69(1):31–40

    Article  Google Scholar 

  4. Awuah GB, Ramaswamy HS, Economides A (2007) Thermal processing and quality: principles and overview. Chem Eng Process 46(6):584–602

    Article  CAS  Google Scholar 

  5. Garcia-Gonzalez L, Geeraerd AH, Spilimbergo S, Elst K, Van Ginneken L, Debevere J, Van Impe JF, Devlieghere F (2007) High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future. Int J Food Microbiol 117(1):1–28

    Article  CAS  Google Scholar 

  6. Damar S, Balaban MO (2006) Review of dense phase CO2 technology: microbial and enzyme inactivation, and effects on food quality. J Food Sci 71(1):R1–R11. doi:10.1111/j.1365-2621.2006.tb12397.x

    Article  CAS  Google Scholar 

  7. Zhang J, Davis TA, Matthews MA, Drews MJ, LaBerge M, An YH (2006) Sterilization using high-pressure carbon dioxide. J Supercrit Fluids 38(3):354–372

    Article  CAS  Google Scholar 

  8. Arreola A, Balaban M, Marshall M, Peplow A, Wei C, Cornell J (1991) Supercritical carbon dioxide effects on some quality attributes of single strength orange juice. J Food Sci 56(4):1030–1033. doi:10.1111/j.1365-2621.1991.tb14634.x

    Article  CAS  Google Scholar 

  9. Balaban MO, Arreola A, Marshall M, Peplow A, Wei C, Cornell J (1991) Inactivation of pectinesterase in orange juice by supercritical carbon dioxide. J Food Sci 56(3):743–746. doi:10.1111/j.1365-2621.1991.tb05372.x

    Article  CAS  Google Scholar 

  10. Boff JM, Truong TT, Min DB, Shellhammer T (2003) Effect of thermal processing and carbon dioxide-assisted high-pressure processing on pectinmethylesterase and chemical changes in orange juice. J Food Sci 68(4):1179–1184. doi:10.1111/j.1365-2621.2003.tb09621.x

    Article  CAS  Google Scholar 

  11. Wei CI, Balaban MO, Fernando SY, Peplow AJ (1991) Bacterial effect of high pressure CO2 treatment on foods spiked with Listeria or Salmonella. J Food Prot 54(4):189–193

    Google Scholar 

  12. Kincal D, Hill W, Balaban M, Portier K, Sims C, Wei C, Marshall M (2006) A continuous high-pressure carbon dioxide system for cloud and quality retention in orange juice. J Food Sci 71(6):C338–C344. doi:10.1111/j.1750-3841.2006.00087.x

    Article  CAS  Google Scholar 

  13. Fabroni S, Amenta M, Timpanaro N, Rapisarda P (2010) Supercritical carbon dioxide-treated blood orange juice as a new product in the fresh fruit juice market. Innov Food Sci Emerg Technol 11(3):477–484

    Article  CAS  Google Scholar 

  14. Park SJ, Lee JI, Park J (2002) Effects of a combined process of high-pressure carbon dioxide and high hydrostatic pressure on the quality of carrot juice. J Food Sci 67(5):1827–1834. doi:10.1111/j.1365-2621.2002.tb08730.x

    Article  CAS  Google Scholar 

  15. Zhou L, Wang Y, Hu X, Wu J, Liao X (2009) Effect of high pressure carbon dioxide on the quality of carrot juice. Innov Food Sci Emerg Technol 10(3):321–327

    Article  CAS  Google Scholar 

  16. Gunes G, Blum LK, Hotchkiss JH (2005) Inactivation of yeasts in grape juice using a continuous dense phase carbon dioxide processing system. J Sci Food Agric 85(14):2362–2368. doi:10.1002/jsfa.2260

    Article  CAS  Google Scholar 

  17. Ferrentino G, Plaza ML, Ramirez-Rodrigues M, Ferrari G, Balaban MO (2009) Effects of dense phase carbon dioxide pasteurization on the physical and quality attributes of a red grapefruit juice. J Food Sci 74(6):E333–E341

    Article  CAS  Google Scholar 

  18. Damar S, Balaban MO, Sims CA (2009) Continuous dense-phase CO2 processing of a coconut water beverage. Int J Food Sci Technol 44(4):666–673. doi:10.1111/j.1365-2621.2008.01784.x

    Article  CAS  Google Scholar 

  19. Lim SB, Yavuz Y, Balaban MO (2006) Continuous high pressure carbon dioxide processing of mandarin juice. Food Sci Biotechnol 15(1):13–18

    CAS  Google Scholar 

  20. Yagiz Y, Lim SL, Balaban MO (2005) Continuous high pressure carbon dioxide processing of mandarin juice In: IFT annual meeting book of abstracts; 2005 July 15–20; New Orleans La Chicago Ill: Inst of Food Technologists Abstract nr 54F-16

  21. Lecky M, Balaban MO (2005) Shelf life evaluation of watermelon juice after processing with a continuous high pressure carbon dioxide system In IFT Annual meeting book of abstract, technologists, I o F (Abstract nr 54F-4) Inst of food technologists, New Orleans, La Chicago Ill

  22. Tomasula PM, Craig JC, Boswell RT (1997) A continuous process for casein production using high-pressure carbon dioxide. J Food Eng 33(3–4):405–419

    Article  Google Scholar 

  23. Hofland GW, van Es M, van der Wielen LAM, Witkamp G-J (1999) Isoelectric precipitation of casein using high-pressure CO2. Ind Eng Chem Res 38(12):4919–4927. doi:10.1021/ie990136+

    Article  CAS  Google Scholar 

  24. Tisi DA (2004) Effects of dense phase CO2 on enzyme activity and casein proteins in raw milk. Ithaca, NY: Cornell University. Available from: http://dspacelibrarycornelledu/handle/1813/60 Accessed 14 June 2005

  25. Del Pozo-Insfran D, Balaban MO, Talcott ST (2006) Microbial stability, phytochemical retention, and organoleptic attributes of dense phase CO2 processed muscadine grape juice. J Agric Food Chem 54(15):5468–5473. doi:10.1021/jf060854o

    Article  CAS  Google Scholar 

  26. Redd JB, Hendrix CM, Hendrix DL (1986) Quality control manual for citrus processing plants. Book1 safety harbor. Intercit, FL

    Google Scholar 

  27. Gui F, Wu J, Chen F, Liao X, Hu X, Zhang Z, Wang Z (2006) Change of polyphenol oxidase activity, color, and browning degree during storage of cloudy apple juice treated by supercritical carbon dioxide. Eur Food Res Technol 223(3):427–432. doi:10.1007/s00217-005-0219-3

    Article  CAS  Google Scholar 

  28. Kelebek H, Canbas A, Selli S (2008) Determination of phenolic composition and antioxidant capacity of blood orange juices obtained from cvs. Moro and Sanguinello (Citrus sinensis (L.) Osbeck) grown in Turkey. Food Chem 107(4):1710–1716

    Article  CAS  Google Scholar 

  29. Gattuso G, Barreca D, Gargiulli C, Leuzzi U, Caristi C (2007) Flavonoid composition of citrus juices. Molecules 12(8):1641–1673

    Article  CAS  Google Scholar 

  30. Merken HM, Beecher GR (2000) Measurement of food flavonoids by high-performance liquid chromatography: a review. J Agric Food Chem 48(3):577–599. doi:10.1021/jf990872o

    Article  CAS  Google Scholar 

  31. Anagnostopoulou MA, Kefalas P, Kokkalou E, Assimopoulou AN, Papageorgiou VP (2005) Analysis of antioxidant compounds in sweet orange peel by HPLC—diode array detection—electrospray ionization mass spectrometry. Biomed Chromatogr 19(2):138–148. doi:10.1002/bmc.430

    Article  CAS  Google Scholar 

  32. Larsen R, Elvevoll EO (2008) Water uptake, drip losses and retention of free amino acids and minerals in cod (Gadus morhua) fillet immersed in NaCl or KCl. Food Chem 107(1):369–376

    Article  CAS  Google Scholar 

  33. Llames CR, Fontaine J (1994) Determination of amino acids in feeds: collaborative study. AOAC Int 77(6):1362–1402

    CAS  Google Scholar 

  34. Park SJ, Park HW, Park J (2003) Inactivation kinetics of food poisoning microorganisms by carbon dioxide and high hydrostatic pressure. J Food Sci 68(3):976–981. doi:10.1111/j.1365-2621.2003.tb08273.x

    Article  CAS  Google Scholar 

  35. Corwin H, Shellhammer T (2002) Combined carbon dioxide and high pressure inactivation of pectin methylesterase, polyphenol oxidase, Lactobacillus plantarum and Escherichia coli. J Food Sci 67(2):697–701. doi:10.1111/j.1365-2621.2002.tb10661.x

    Article  CAS  Google Scholar 

  36. Wouters PC, Glaasker E, Smelt JPPM (1998) Effects of high pressure on inactivation kinetics and events related to proton efflux in Lactobacillus plantarum. Appl Environ Microbiol 64(2):509–514

    CAS  Google Scholar 

  37. Ballestra P, Da Silva AA, Cuq J (1996) Inactivation of Escherichia coli by carbon dioxide under pressure. J Food Sci 61(4):829–831. doi:10.1111/j.1365-2621.1996.tb12212.x

    Article  CAS  Google Scholar 

  38. Watanabe T, Furukawa S, Hirata J, Koyama T, Ogihara H, Yamasaki M (2003) Inactivation of Geobacillus stearothermophilus spores by high-pressure carbon dioxide treatment. Appl Environ Microbiol 69(12):7124–7129. doi:10.1128/aem.69.12.7124-7129.2003

    Article  CAS  Google Scholar 

  39. Calvo L, Torres E (2010) Microbial inactivation of paprika using high-pressure CO2. J Supercrit Fluids 52(1):134–141

    Article  CAS  Google Scholar 

  40. Hong SI, Pyun YR (1999) Inactivation kinetics of Lactobacillus plantarum by high pressure carbon dioxide. J Food Sci 64(4):728–733. doi:10.1111/j.1365-2621.1999.tb15120.x

    Article  CAS  Google Scholar 

  41. Butz P, Tauscher B (2002) Emerging technologies: chemical aspects. Food Res Int 35(2–3):279–284

    Article  CAS  Google Scholar 

  42. Gasperi F, Aprea E, Biasioli F, Carlin S, Endrizzi I, Pirretti G, Spilimbergo S (2009) Effects of supercritical CO2 and N2O pasteurisation on the quality of fresh apple juice. Food Chem 115(1):129–136

    Article  CAS  Google Scholar 

  43. Lee H, Coates G (1999) Thermal pasteurization effects on color of red grapefruit juices. J Food Sci 64(4):663–666. doi:10.1111/j.1365-2621.1999.tb15106.x

    Article  CAS  Google Scholar 

  44. Krapfenbauer G, Kinner M, Gössinger M, Schönlechner R, Berghofer E (2006) Effect of thermal treatment on the quality of cloudy apple juice. J Agric Food Chem 54(15):5453–5460. doi:10.1021/jf0606858

    Article  CAS  Google Scholar 

  45. Garde-Cerdán T, Arias-Gil M, Marsellés-Fontanet AR, Ancín-Azpilicueta C, Martín-Belloso O (2007) Effects of thermal and non-thermal processing treatments on fatty acids and free amino acids of grape juice. Food Control 18(5):473–479

    Article  Google Scholar 

  46. Zhao W, Yang R, Wang M, Lu R (2009) Effects of pulsed electric fields on bioactive components, colour and flavour of green tea infusions. Int J Food Sci Technol 44(2):312–321

    Article  CAS  Google Scholar 

  47. Harrison S, Barbosa-Cánovas G, Swanson B (1997) Saccharomyces cerevisiae structural changes induced by pulsed electric field treatment. Lebensmittel-Wissenschaft und-Technologie 30(3):236–240

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from Guangdong natural foundation under the contract No. 07117971, the cooperation project in industry, education, and research of Guangdong province (2006D90204006), and the Key Programs of the Guangdong Academy of agricultural Sciences (2008A024200008) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gengsheng Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, M., Wu, J., Xu, Y. et al. Effects on microbial inactivation and quality attributes in frozen lychee juice treated by supercritical carbon dioxide. Eur Food Res Technol 232, 803–811 (2011). https://doi.org/10.1007/s00217-011-1447-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-011-1447-3

Keywords

Navigation