Skip to main content
Log in

Impact of far-infrared radiation-assisted heat pump drying on chemical compositions and physical properties of squid (Illex illecebrosus) fillets

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Squid fillets were dried in a heat pump (HP) dryer alone or combining with far-infrared radiation (FIR) with the power of 500, 1,000, and 2,000 W at 50 °C and air flow rate of 0.8 m s−1. Proximate composition, total volatile basic nitrogen (TVBN), fatty acid composition, trimethylamine-N-oxide demethylase (TMAOase), dimethylamine (DMA), trimethylamine (TMA), color, and microbial changes of squid were recorded. Results showed that FIR in combination with HP decreased TMAOase, TMA, TVBN, polyunsaturated fatty acids (PUFA), and total aerobic bacterial counts, but increased both saturated (SFA) and monounsaturated (MUFA) fatty acid content, compared with HP alone. Dried squids had higher values of redness and yellowness, but lower values of lightness (L) than raw ones. No significant differences were found in protein, DMA, or L values among all dried samples. The inhibitory effects of FIR on TMAOase, TMA production, and microbial growth were more obvious with increase in the power supplied to the FIR rods. The present data suggest that FIR in combination with HP technology has the potential to retard the quality deterioration of squid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ramirez-Olivas R, Rouzaud-Sanchez O, Haard NF, Pacheco-Aguilar R, Ezquerra-Brauer JM (2004) Eur Food Res Technol 219:312–315

    Article  CAS  Google Scholar 

  2. Ren AQ (2009) Master thesis, Jiangnan University, Wuxi, China (in Chinese)

  3. Chou SK, Chua KJ (2001) Trend Food Sci Tech 12:359–369

    Article  Google Scholar 

  4. Vazquez G, Chenlo F, Moreria R, Cruz E (1997) Drying Technol Int J 15:899–920

    Article  Google Scholar 

  5. Shi QL, Xue CH, Zhao Y, Li ZJ, Wang XY (2008) J Food Eng 84:12–20

    Article  Google Scholar 

  6. Namsanguan Y, Tia W, Devahastin S, Soponronnarit S (2004) Drying Technol 22:759–778

    Article  Google Scholar 

  7. Colak N, Hepbasli A (2009) Energ Convers Manage 50:2180–2186

    Article  Google Scholar 

  8. Sawai J, Sagara K, Hashimoto A, Igarashi H, Shimizu M (2003) Int J Food Sci Technol 38:661–667

    Article  CAS  Google Scholar 

  9. Krishnamurthy K, Khurana HK, Jun S, Irudayaraj J, Demirci A (2008) Compr Rev Food Sci Food Safety 7:1–13

    Article  CAS  Google Scholar 

  10. Nathakaranakule A, Jaiboon P, Soponronnarit S (2010) J Food Eng 100:662–668

    Article  CAS  Google Scholar 

  11. Nimmol C, Devahastin S, Swasdisevi T, Soponronnarit S (2007) J Food Eng 81:624–633

    Article  Google Scholar 

  12. Tan M, Chua KJ, Mujumdar AS, Chou SK (2001) Drying technol 19:2193–2207

    Article  CAS  Google Scholar 

  13. AOAC (1990) Association of Official Analytical Chemists, Arlington, VA

  14. Wu T, Mao L (2008) Food Chem 110:647–653

    Article  CAS  Google Scholar 

  15. Gou J, Lee HY, Ahn J (2010) Food Chem 119:471–476

    Article  CAS  Google Scholar 

  16. Antonacopoulos N, Vyncke W (1989) Z Lebensm Unters Forsch 189:309–316

    Article  CAS  Google Scholar 

  17. Croxall JP, Prince PA (1998) Br Antarct Surv Bull 55:27–31

    Google Scholar 

  18. Parkin KL, Hultin HO (1982) FEBS Lett 139:61–64

    Article  CAS  Google Scholar 

  19. Sotelo CG, Gallardo JM, Pineiro C, Perez-Martin RI (1995) Food Chem 53:61–65

    Article  CAS  Google Scholar 

  20. Huss HH (1988) Food and Agricultural Organization, Rome, Italy

  21. Ryu BH, Lee JC, Lee EH (1974) Bull Kor Fish Soc 7:115–120

    Google Scholar 

  22. Spinelli J, Koury B (1979) J Agric Food Chem 27:1104–1108

    Article  CAS  Google Scholar 

  23. Goulas AE, Kontominas MG (2005) Food Chem 93:511–520

    Article  CAS  Google Scholar 

  24. Vega-Gálvez A, Miranda M, Clavería R, Quispe I, Vergara J, Uribe E, Paez H, Di Scala K (2011) Lebensm-Wiss-Technol 44:16–23

    Google Scholar 

  25. Fu XY, Xue CH, Miao BC, Li ZJ, Zhang YQ, Wang Q (2007) Food Chem 103:287–294

    Article  CAS  Google Scholar 

  26. Tanaka F, Verboven P, Scheerlinck N, Morita K, Iwasaki K, Nicolaï B (2007) J Food Eng 79:445–452

    Article  Google Scholar 

  27. Maárquez-Riáos E, Moraán-Palacio EF, Lugo-Saánchez ME, Ocano-Higuera VM, Pacheco-Aguilar R (2007) J Food Sci 72:C356–C362

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the “Shanghai Pujiang Program”(090628), “Shanghai Natural Science Foundation”, and “National Natural Science, Foundation of China” (31071617 and 30600420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Y., Liu, Y., Qian, B. et al. Impact of far-infrared radiation-assisted heat pump drying on chemical compositions and physical properties of squid (Illex illecebrosus) fillets. Eur Food Res Technol 232, 761–768 (2011). https://doi.org/10.1007/s00217-011-1441-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-011-1441-9

Keywords

Navigation