Skip to main content
Log in

Hawthorn fruit increases the antioxidant capacity and reduces lipid peroxidation in senescence-accelerated mice

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Hawthorn fruit has long been used as a folk medicine with many medicinal benefits. HPLC analysis revealed that hawthorn fruit extract (HFE) contained 19.86% procyanidin B2, 15.27% epicatechin, 3.10% chlorogenic acid, 2.91% hyperoside, and 1.34% isoquercitrin. Antioxidants are essential for protection of the bodies against the damaging action of free radicals. And we hypothesized that HFE could enhance antioxidant defenses and improve antioxidant status in aged mice. To test this hypothesis, senescence-accelerated mice (SAM) used as an aging animal model were treated with HFE to evaluate the antioxidant effects of HFE in vivo. We found that the activities of antioxidant enzymes, namely, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in serum, liver, and brain of SAM mice increased upon HFE treatment, meanwhile the malondialdehyde (MDA) content declined. Concurrently, the gene expression levels of SOD, CAT, and GSH-Px were up-regulated in liver. Furthermore, the antioxidant potential of HFE was also investigated with different systems such as superoxide anion radical scavenging and reducing power. The results showed that HFE indicated a concentration-dependent antioxidant activity in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CAT:

Catalase

GSH-Px:

Glutathione peroxidase

HFE:

Hawthorn fruit extract

LPO:

Lipid hydroperoxide

LDL:

Low density lipoprotein

MDA:

Malondialdehyde

ROS:

Reactive oxygen species

SAM mice:

Senescence-accelerated mice

SOD:

Superoxide dismutase

TAC:

Total antioxidant capacity

References

  1. Zhang ZS, Chang Q, Zhu M, Huang Y, Walter KKH, Chen ZY (2001) Characterization of antioxidants present in hawthorn fruits. J Nutr Biochem 12:144–152

    Article  CAS  Google Scholar 

  2. Zhang ZS, Walter KH, Huang Y, James AE, Li WL (2002) Hawthorn fruits is hypolipidemic in rabbits fed a high cholesterol diet. J Nutr 132:5–10

    CAS  Google Scholar 

  3. Takeda T, Hosokawa M, Higuchi K, Hosono M, Akiguchi I, Katoh H (1994) A novel murine model of aging, senescence-accelerated mouse (SAM). Arch Gerontol Geriat 19:185–192

    Article  CAS  Google Scholar 

  4. Miyamoto M, Kiyota Y, Yamazaki N, Nagaoka A, Matsuo T, Nagawa Y (1986) Age-related changes in learning and memory in the senescence-accelerated mouse (SAM). Physiol Behav 38:399–406

    Article  CAS  Google Scholar 

  5. Miyamoto M (1997) Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP8 and SAMP10. Exp Gerontol 32:139–148

    Article  CAS  Google Scholar 

  6. Coto-Montes A, Hardeland R (1999) Antioxidative effects of melatonin in Drosophila melanogaster: antagonization of damage induced by the inhibition of catalase. J Pineal Res 27:154–158

    Article  CAS  Google Scholar 

  7. Liu F, Ooi VEC, Chang ST (1997) Free radical scavenging activity of mushroom polysaccharide extracts. Life Sci 60:763–771

    Article  CAS  Google Scholar 

  8. Lee SC, Jeong SM, Kim SY, Park HR, Nam KC, Ahn DU (2006) Effect of far-infrared radiation and heat treatment on the antioxidant activity of water extracts from peanut hulls. Food Chem 94:489–493

    Article  CAS  Google Scholar 

  9. Wang H, Gao XD, Zhou GC, Cai L, Yao WB (2008) In vitro and in vivo antioxidant activity of aqueous extract from Choerospondias axillaris fruit. Food Chem 106:888–895

    Article  CAS  Google Scholar 

  10. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  11. Aebi H (1984) Ctalase in vitro. Methods Enzymol 105:121–127

    Article  CAS  Google Scholar 

  12. Liu XJ, Zhao J, Zheng RL (2003) DNA damage of tumor-associated lymphocytes and total antioxidant capacity in cancerous patients. Mutat Res 539:1–8

    CAS  Google Scholar 

  13. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  14. Zhang ZS, Wang H, Jiao R, Peng C, Wong YM, Venus SY, Huang Y, Chen ZY (2009) Choosing hamsters but not rats as a model for studying plasma cholesterol-lowering activity of functional foods. Mol Nutr Food Res 53:921–930

    Article  CAS  Google Scholar 

  15. Beauchamp C, Fridovich I (1971) Superoxide dismutase:improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:176–277

    Article  Google Scholar 

  16. Dorman HJD, Peltoketo A, Hiltunen R, Tikkanen MJ (2003) Characterization of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food Chem 83:255–262

    Article  CAS  Google Scholar 

  17. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    CAS  Google Scholar 

  18. Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1224

    Article  CAS  Google Scholar 

  19. Markesbery WR, Lovell MA (1998) Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging 19:33–36

    Article  CAS  Google Scholar 

  20. Liu JK, Mori A (1999) Stress aging and brain oxidative damage. Neurochem Res 24:1479–1497

    Article  CAS  Google Scholar 

  21. Ferrari CKB (2001) Oxidative stress pathophysiology: searching for an effective antioxidant protection. Int Med J 8:175–184

    CAS  Google Scholar 

  22. Bahorun T, Trotin F, Pommery J, Vasseur J, Pinkas M (1994) Antioxidant activities of Crataegus monogyna extracts. Planta Med 60:323–328

    Article  CAS  Google Scholar 

  23. Bahorun T, Gressier B, Trotin F, Brunet C, Dine T, Luyckx M, Vasseur J, Cazin M, Cazin JC, Pinkas M (1996) Oxygen species scavenging activity of phenolic extracts from hawthorn fresh plant organs and pharmaceutical preparations. Arzneim-Forsch 46:1086–1089

    CAS  Google Scholar 

  24. Kono Y, Fridovich I (1982) Superoxide radical inhibits catalase. J Biol Chem 257:5751–5754

    CAS  Google Scholar 

  25. Blum J, Fridovich I (1985) Inactivation of glutathione peroxidase by superoxide radical. Arch Biochem Biophys 240:500–508

    Article  CAS  Google Scholar 

  26. Marcilhac A (2004) Intracellular signaling pathways, apoptosis and neurodegenerative diseases. Psychol Neuropsychiatr Vieil 2:203–214

    Google Scholar 

  27. Wang BC, Peng L, Zhu L, Ren P (2007) Protective effect of total flavonoids from Spirodela polyrrhiza (L.) Schleid on human umbilical vein endothelial cell damage induced by hydrogen peroxide. Colloid Surfaces B 60:36–40

    Article  CAS  Google Scholar 

  28. Anila L, Vijayalakshmi NR (2003) Antioxidant action of flavonoids from Mangifera indica and Emblica officinalis in hypercholesterolemic rats. Food Chem 83:569–574

    Article  CAS  Google Scholar 

  29. Ana Š, Tihomir B, Sandra S, Borka K, Višnja Š, Gordana R, Saša L, Dragan B, Barbara P, Daniela R, Tatjana M (2009) Antioxidant effects of flavonoid from Croatian Cystus incanus L. rich bee pollen. Food Chem Toxicol 47:547–554

    Article  Google Scholar 

  30. Chinnasamy E, Kasevan SJ, Devaraj NS (2009) Hawthorn extract reduces infarct volume and improves neurological score by reducing oxidative stress in rat brain following middle cerebral artery occlusion. Int J Dev Neurosci 27:799–803

    Article  Google Scholar 

  31. Kwoka CY, Wonga CNY, Yaua MYC, Yua PHF, Auc ALS, Poonc CCW, Setoc SW, Lamc TY, Kwanc YW, Chana SW (2010) Consumption of dried fruit of Crataegus pinnatifida (hawthorn) suppresses high-cholesterol diet-induced hypercholesterolemia in rats. J Funct Foods 2:179–186

    Article  Google Scholar 

  32. Shanthi R, Parasakthy K, Deepalakshimi PD, Devaraj SN (1994) Hypolipidemic activity of tincture of Crataegus in rats. Indian J Biochem Bio 31:143–146

    CAS  Google Scholar 

  33. Minotti G (1988) Metals and membrane lipid damage by oxy-radicals. Ann N Y Acad Sci 551:34–44

    Article  CAS  Google Scholar 

  34. Akiko S, Takako Y, Eun JC, Takuya O, Yasuo S (2004) Antioxidative effects related to the potential anti-aging properties of the Chinese prescription Kangen-Karyu and Carthami Flos in senescence-accelerated mice. Arch Gerontol Geriat 39:69–82

    Article  Google Scholar 

  35. Carlos KBF (2004) Functional foods, herbs and nutraceuticals: towards biochemical mechanisms of healthy aging. Biogerontology 5:275–289

    Article  Google Scholar 

  36. Juskiewicza J, Zdunczyka Z, Wroblewskaa M, Oszmianskib J, Hernandezc T (2002) The response of rats to feeding with diets containing grapefruit flavonoid extract. Food Res Int 35:201–205

    Article  Google Scholar 

  37. Luo YC, Chen G, Li B, Ji BP, Guo Y, Tian F (2009) Evaluation of antioxidative and hypolipidemic properties of a novel functional diet formulation of Auricularia auricula and Hawthorn. Innov Food Sci Emerg 10:215–221

    Article  CAS  Google Scholar 

  38. Ammon HP, Handel M (1981) Crataegus, toxicology and pharmacology. Part II: Pharmacodynamics. Planta Med 43:209–239

    Article  CAS  Google Scholar 

  39. Yao M, Ritchie HE, Patricia DB-W (2008) A reproductive screening test of hawthorn. J Ethnopharmacol 118:127–132

    Article  Google Scholar 

  40. Zhang DL, Zhang YT, Yin JJ, Zhao BL (2004) Oral administration of Crataegus flavonoids protects against ischemia/reperfusion brain damage in gerbils. J Neurochem 90:211–219

    Article  CAS  Google Scholar 

  41. Krzeminski T, Chatterjee SS (1993) Ischemia and early reperfusion induced arrhythmias: beneficial effects of an extract of Crataegus oxyacantha L. Pharm Pharmacol Lett 3:45–48

    Google Scholar 

  42. Zhang ZS, Ho WKK, Huang Y, Chen ZY (2002) Hypocholesterolemic activity of hawthorn fruit is mediated by regulation of cholesterol-7a-hydroxylase and acyl CoA:cholesterol acyltransferase. Food Res Int 35:885–891

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is partly supported by a grant from the National Natural Science Foundation of China (grant no. 30671766).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zesheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Zhang, Z., Guo, Y. et al. Hawthorn fruit increases the antioxidant capacity and reduces lipid peroxidation in senescence-accelerated mice. Eur Food Res Technol 232, 743–751 (2011). https://doi.org/10.1007/s00217-011-1435-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-011-1435-7

Keywords

Navigation