European Food Research and Technology

, Volume 232, Issue 2, pp 221–230 | Cite as

The effect of Fenton’s reactants and aldehydes on the changes of myoglobin from Eastern little tuna (Euthynnus affinis) dark muscle

  • Yaowapa Thiansilakul
  • Soottawat Benjakul
  • Mark P. Richards
Original paper


The influences of Fenton’s reactants (H2O2 and FeCl2) and aldehydes (hexanal and hexenal) on changes of oxymyoglobin and metmyoglobin from Eastern little tuna (Euthynnus affinis) dark muscle were studied. In the presence of H2O2, both oxymyoglobin and metmyoglobin were rapidly oxidized into ferrylmyoglobin based on spectra patterns. In the presence of Fe2+ and/or H2O2, the changes in fluorescent intensity of myoglobin were noticeable, but there were no changes in aggregation ratio. Release of non-heme iron from myoglobin was mainly governed by H2O2. When aldehydes were incorporated, the oxidation of oxymyoglobin and conformational changes of globin were more pronounced. No release of non-heme iron was noticeable, suggesting the stability of heme moiety toward aldehydes. Hexenal had a great impact on cross-linking of oxymyoglobin and metmyoglobin via covalent modification. Alteration of myoglobin redox state might be enhanced by conformational changes of globin induced by both Fenton’s reactants and aldehydes.


Myoglobin Ferrylmyoglobin H2O2 Cross-linking Hexanal Hexenal 



This research was supported by the Thailand Research Fund under the Royal Golden Jubilee PhD Program to Yaowapa Thiansilakul (PHD/0101/2550) and TRF senior research scholar.


  1. 1.
    O’Grady MN, Monahan FJ, Brunton NP (2001) J Food Sci 66:386–392CrossRefGoogle Scholar
  2. 2.
    Richards MP, Dettmann MA, Grunwald EW (2005) J Agric Food Chem 53:10231–10238CrossRefGoogle Scholar
  3. 3.
    Chan WKM, Faustman C, Yin M, Decker EA (1997) Meat Sci 46:181–190CrossRefGoogle Scholar
  4. 4.
    Baron CP, Skibsted LH, Andersen HJ (2000) Free Radic Biol Med 28:549–558CrossRefGoogle Scholar
  5. 5.
    Davies MJ (1991) Biochim Biophys Acta 1077:86–90CrossRefGoogle Scholar
  6. 6.
    Robinson S, Dang T, Dringen R, Bishop G (2009) Redox Rep 14:228–235CrossRefGoogle Scholar
  7. 7.
    Vuletich JL, Osawa Y, Aviram M (2000) Biochem Biophys Res Commun 269:647–651CrossRefGoogle Scholar
  8. 8.
    Baron CP, Andersen HJ (2002) J Agric Food Chem 50:3887–3897CrossRefGoogle Scholar
  9. 9.
    Faustman C, Liebler DC, McClure TD, Sun Q (1999) J Agric Food Chem 47:3140–3144CrossRefGoogle Scholar
  10. 10.
    Lynch MP, Faustman C (2000) J Agric Food Chem 48:600–604CrossRefGoogle Scholar
  11. 11.
    Lee S, Joo ST, Alderton AL, Hill DW, Faustman C (2003) J Food Sci 68:1664–1668CrossRefGoogle Scholar
  12. 12.
    Lee S, Phillips AL, Liebler DC, Faustman C (2003) Meat Sci 63:241–247CrossRefGoogle Scholar
  13. 13.
    Fisheries Foreign Affairs Division (2007) Statistics on Fishery Production 2007, Ministry of Agriculture and Co-operatives. Accessed 19 March 2010
  14. 14.
    Thiansilakul Y, Benjakul S, Richards MP (2011) Food Chem 124:254–261CrossRefGoogle Scholar
  15. 15.
    Tang J, Faustman C, Hoagland TA (2004) J Food Sci 69:717–720CrossRefGoogle Scholar
  16. 16.
    Swatland HJ (1989) Can Inst Food Sci Technol J 22:390–402Google Scholar
  17. 17.
    Chanthai S, Ogawa M, Tamiya T, Tsuchiya T (1996) Fish Sci 62:927–932Google Scholar
  18. 18.
    Chow CJ, Ochiai Y, Watabe S (2004) J Food Biochem 28:123–134CrossRefGoogle Scholar
  19. 19.
    Schricker BR, Miller DD, Stouffer JR (1982) J Food Sci 47:740–743CrossRefGoogle Scholar
  20. 20.
    Laemmli UK (1970) Nature 227:680–685CrossRefGoogle Scholar
  21. 21.
    Steel RGD, Torrie JH (1980) Principles and procedures of statistics; a biometrical approach. McGraw-Hill Book, New YorkGoogle Scholar
  22. 22.
    Cooper CE, Jurd M, Nicholls P, Wankasi MM, Svistunenko DA, Reeder BJ, Wilson MT (2005) Dalton Trans 21:3483–3488CrossRefGoogle Scholar
  23. 23.
    Romero F, Ordonez I, Arduini A, Cadenas E (1992) J Biol Chem 267:1680–1688Google Scholar
  24. 24.
    Prasad M, Engelman R, Jones R, Das D (1989) Biochem J 263:731–736Google Scholar
  25. 25.
    DeGray JA, Gunther MR, Tschirret-Guth R, de Montellano PRO, Mason RP (1997) J Biol Chem 272:2359–2362CrossRefGoogle Scholar
  26. 26.
    Bontidean I, Berggren C, Johansson G, Csoregi E, Mattiasson B, Lloyd JR, Jakeman KJ, Brown NL (1998) Anal Chem 70:4162–4169CrossRefGoogle Scholar
  27. 27.
    Gajewski E, Dizdaroglu M (1990) Biochemistry 29:977–980CrossRefGoogle Scholar
  28. 28.
    Uchida K, Kato Y, Kawakishi S (1990) Biochem Biophys Res Commun 169:265–271CrossRefGoogle Scholar
  29. 29.
    Chi EY, Krishnan S, Randolph TW, Carpenter JF (2003) Pharm Res 20:1325–1336CrossRefGoogle Scholar
  30. 30.
    Livingston DJ, Brown WD (1981) Food Technol 35:238–252Google Scholar
  31. 31.
    Maheswarappa NB, Faustman C, Tatiyaborworntham N, Yin S, Ramanathan R, Mancini RA (2009) J Agric Food Chem 57:8668–8676CrossRefGoogle Scholar
  32. 32.
    Libondi T, Ragone R, Vincenti D, Stiuso P, Auricchio G, Colonna G (1994) Int J Pept Protein Res 44:342–347CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Yaowapa Thiansilakul
    • 1
  • Soottawat Benjakul
    • 1
  • Mark P. Richards
    • 2
  1. 1.Department of Food TechnologyFaculty of Agro-Industry Prince of Songkla UniversitySongkhlaThailand
  2. 2.Department of Animal SciencesMeat Science and Muscle Biology Laboratory, University of Wisconsin-MadisonMadisonUSA

Personalised recommendations