Skip to main content
Log in

Antioxidant properties of major metabolites of quercetin

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Dietary flavonoids have been related to health promotion, which has been attributed in part to their antioxidant properties as demonstrated in many in vitro studies. However, in the human organism most flavonoids are little bioavailable and largely transformed to different metabolites that are crucial to explain the health effects associated with their dietary intake, although little is known about their biological activities. Quercetin is a majority flavonoid in the human diet that has been commonly used in studies on the flavonoid and health relationships. In this study, the antioxidant activity of different conjugated metabolites of quercetin (quercetin 3′-O-sulphate, quercetin 4′-O-sulphate, quercetin 3-O-glucuronide and isorhamnetin 3-O-sulphate) prepared in the laboratory, and of some phenolic acids that may result from its colonic degradation, was investigated by two in vitro assays (ABTS and FRAP assays). As expected, substitution of the hydroxyl groups of quercetin by the conjugating substituents resulted in a decrease in the antioxidant activity with regard to the parent compound. Despite this, the conjugated metabolites still retained significant antioxidant activity and behave as significantly better radical scavengers and reducing compounds than usually recognized antioxidants like α-tocopherol. Greater antioxidant activity of the metabolites was found in the ABTS assay, conducted at pH 7.4, suggesting that quercetin derivatives could act as potential radical scavengers in physiological conditions. Similarly, antioxidant activity significantly higher than α-tocopherol was also found in the ABTS assay for 3,4-dihydroxyphenylacetic, 3-methoxy-4-hydroxyphenylacetic and 3-(3,4-dihydroxyphenyl)propionic acids, described as products of the colonic degradation of quercetin. Phenylacetic acids were more active than benzoic and phenylpropionic acids, and the activity increased with the number of phenolic hydroxyls in the molecule; methoxylated derivatives showed, in general, lower activity than the equivalent O-dihydroxylated forms but greater than that of the monohydroxylated precursor. The results obtained are expected to contribute to the understanding of the mechanisms involved in the biological effects associated with the intake of flavonoid-rich diets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hertog MG, Feskens EJ, Kromhout D, Hertog MG, Hollman PC, Katan MB (1993) Lancet 342:1007–1011

    Article  CAS  Google Scholar 

  2. Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovic S, Pekkarinen M, Simic BS, Toshima H, Feskens EJM, Hollman PC, Katan MB (1995) Arch Intern Med 155:381–386

    Article  CAS  Google Scholar 

  3. Kelli SO, Hertog MGL, Feskens EJM, Kromhout D (1996) Arch Intern Med 156:637–642

    Article  Google Scholar 

  4. Huxley RR, Neil HA (2003) Eur J Clin Nutr 57:904–908

    Article  CAS  Google Scholar 

  5. Sampson L, Rimm E, Hollman PC, de Vries JH, Katan MB (2002) J Am Diet Assoc 102:1414–1420

    Article  Google Scholar 

  6. Rice-Evans CA, Miller NJ, Paganga G (1996) Free Radical Bio Med 20:933–956

    Article  CAS  Google Scholar 

  7. Cos P, Ying L, Calomme M, Hu JP, Cimanga K, Van Poel B, Pieters L, Vlietinck AJ, Vanden Berghe D (1998) J Nat Prod 61:71–76

    Article  CAS  Google Scholar 

  8. Da Silva EL, Tsushida T, Terao J (1998) Arch Biochem Biophys 349:313–320

    Article  CAS  Google Scholar 

  9. Gryglewski RJ, Korbut R, Robak J, Swies J (1987) Biochem Pharmacol 36:317–322

    Article  CAS  Google Scholar 

  10. Duarte J, Perez-Vizcaino F, Zarzuelo A, Jimenez J, Tamargo J (1993) Eur J Pharmacol 239:1–7

    Article  CAS  Google Scholar 

  11. Duarte J, Perez-Palencia R, Vargas F, Ocete MA, Pérez-Vizcaino F, Zarzuelo A, Tamargo J (2001) Brit J Pharmacol 133:117–124

    Article  CAS  Google Scholar 

  12. Sanchez M, Galisteo M, Vera R, Villar IC, Zarzuelo A, Tamargo J, Perez-Vizcaino F, Duarte J (2006) J Hypertens 24:75–84

    Article  CAS  Google Scholar 

  13. Conquer JA, Maiani G, Azzini E, Raguzzini A, Holub BJ (1998) J Nutr 128:593–597

    CAS  Google Scholar 

  14. Perez-Vizcaino F, Duarte J, Santos-Buelga C, Osuna A (2009) Pharmacol Rep 61:67–75

    CAS  Google Scholar 

  15. Kroon PA, Clifford MN, Crozier A, Day AJ, Donovan JL, Manach C, Williamson G (2004) Am J Clin Nutr 80:15–21

    CAS  Google Scholar 

  16. Day AJ, Du Pont MS, Ridley S, Rhodes M, Rhodes MJC, Morgan MRA, Williamson G (1998) FEBS Lett 436:71–75

    Article  CAS  Google Scholar 

  17. Gee JM, Du Pont MS, Day AJ, Plumb GW, Williamson G, Johnson IT (2000) J Nutr 130:2765–2771

    CAS  Google Scholar 

  18. Nemeth K, Plumb GW, Berrin JG, Juge N, Jacob R, Naim HY, Williamson G, Swallow DM, Kroon PA (2003) Eur J Nutr 42:29–42

    Article  CAS  Google Scholar 

  19. Scalbert A, Williamson G (2000) J Nutr 130:2073S–2085S

    CAS  Google Scholar 

  20. Rechner AR, Kuhnle G, Bremner P, Hubbard GP, Moore KP, Rice-Evans CA (2002) Free Radical Bio Med 33:220–235

    Article  CAS  Google Scholar 

  21. Day AJ, Mellon F, Barron D, Sarrazin G, Michael RAM, Williamson G (2001) Free Radical Res 35:941–952

    Article  CAS  Google Scholar 

  22. Mullen W, Boitier A, Stewart AJ, Crozier A (2004) J Chromatogr A 1058:163–168

    CAS  Google Scholar 

  23. Mullen W, Edwards CA, Crozier A (2006) Brit J Nutr 96:107–116

    Article  CAS  Google Scholar 

  24. Crawford DL, Sinnhuber RO, Aft H (1960) J Food Sci 26:139–145

    Article  Google Scholar 

  25. Lemanska K, Van der Woude H, Szymusiak H, Boersma MB, Gliszczynska-Swiglo A, Rietjens IMCM, Tyrakowska B (2004) Free Radical Res 38:639–647

    Article  CAS  Google Scholar 

  26. Dueñas M, Gonzalez-Manzano S, Gonzalez-Paramas AM, Santos-Buelga C (2010) J Pharmaceut Biomed 51:443–449

    Article  Google Scholar 

  27. Shirai M, Moon JH, Tsushida T, Terao J (2001) J Agric Food Chem 49:5602–5608

    Article  CAS  Google Scholar 

  28. Alluis B, Dangles O (2001) Helv Chim Acta 84:1133–1156

    Article  CAS  Google Scholar 

  29. Justino GC, Santos MR, Canario S, Borges C, Florencio MH, Mira L (2004) Arch Biochem Biophys 432:109–121

    CAS  Google Scholar 

  30. Janisch KM, Williamson G, Needs P, Plumb GW (2004) Free Radical Res 38:877–884

    Article  CAS  Google Scholar 

  31. Aura AM, O’Leary KA, Williamson G, Ojala M, Bailey M, Puupponen-Pimia R, Nuutila AM, Oksman-Caldentey KM, Poutanen K (2002) J Agric Food Chem 50:1725–1730

    Article  CAS  Google Scholar 

  32. Aura AM (2008) Phytochem Rev 7:407–429

    Article  CAS  Google Scholar 

  33. Winter J, Moore LH, Dowell VR, Bokkenheuser VD (1989) Appl Environ Microb 55:1203–1208

    CAS  Google Scholar 

  34. Selma MV, Espin JC, Tomas-Barberan FA (2009) J Agric Food Chem 57:6485–6501

    Article  CAS  Google Scholar 

  35. Sroka Z, Cisowski W (2003) Food Chem Toxicol 41:753–758

    Article  CAS  Google Scholar 

  36. Dueñas M, Mingo-Chornet H, Pérez-Alonso JJ, Di Paola-Naranjo R, González-Paramás AM, Santos-Buelga C (2008) Eur Food Res Technol 227:1069–1076

    Article  Google Scholar 

  37. Jones DJL, Jukes-Jones R, Verschoyle RD, Farmer PB, Gescher AA (2005) Bioorgan Med Chem 13:6727–6731

    Article  CAS  Google Scholar 

  38. Benzie IFF, Strain JJ (1996) Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  39. Smolarz HD, Budzianowski J, Bogucka-Kocka A, Kocki J, Mendyk E (2008) Phytochem Analysis 19:506–513

    Article  CAS  Google Scholar 

  40. Lin HY, Luo YH, Lin YL, Chiang W (2009) J Agric Food Chem 57:6623–6629

    Article  CAS  Google Scholar 

  41. Mariel-Agnese A, Nuñez-Montoya S, Ariza-Espinar L, Cabrera JL (1999) Biochem Syst Ecol 27:739–742

    Article  Google Scholar 

  42. Day AJ, Bao YP, Morgan MRA, Williamson G (2000) Free Radical Bio Med 29:1234–1243

    Article  CAS  Google Scholar 

  43. Cermak R, Landgraf S, Wolffram S (2003) J Nutr 133:2802–2807

    CAS  Google Scholar 

  44. Mullen W, Rouanet JM, Auger C, Teissedre PL, Caldwell ST, Hartley RC, Lean MEJ, Edwards CA, Crozier A (2008) J Agric and Food Chem 56:12127–12137

    Article  CAS  Google Scholar 

  45. van Acker SA, van den Berg DJ, Tromp MN, Griffioen DH, van Bennekom WP, van der Vijgh WJ, Bast A (1996) Free Radical Bio Med 20:331–342

    Article  Google Scholar 

  46. Cren-Olivé C, Teissier E, Duriez P, Rolando C (2003) Free Radical Bio Med 24:850–855

    Article  Google Scholar 

  47. Pollard SE, Kuhnle GGC, Vauzour D, Vafeiadou K, Tzounis X, Whiteman M, Rice-Evans C, Spencer JPE (2006) Biochem Bioph Res Co 350:960–968

    Article  CAS  Google Scholar 

  48. Del Río D, Costa LG, Lean MEJ, Crozier A (2010) Nutr Metab Cardiovas 20:1–6

    Article  Google Scholar 

Download references

Acknowledgments

Financial support was obtained from the Spanish Ministerio de Ciencia e Innovación through the project AGL2007-66108-C04-02 and the Consolider-Ingenio 2010 Programme (FUN-C-FOOD, CSD2007-00063). Author M. Dueñas is indebted to the Programa Ramón y Cajal for a contract. Thanks are also due to Prof. Dr. José Luis Cabrera, from the University of Cordoba (Argentina) for supplying the plant materials for the isolation of isorhamnetin-3-O-sulphate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celestino Santos-Buelga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dueñas, M., Surco-Laos, F., González-Manzano, S. et al. Antioxidant properties of major metabolites of quercetin. Eur Food Res Technol 232, 103–111 (2011). https://doi.org/10.1007/s00217-010-1363-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-010-1363-y

Keywords

Navigation