Skip to main content

Advertisement

Log in

Purification and characterization of hydroperoxide lyase from amaranth tricolor (Amaranthus mangostanus L.) leaves

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Hydroperoxide lyase (HPL) was extracted from amaranth tricolor leaves using Triton X-100, and purified to electrophoretic homogeneity by ammonium sulfate precipitation, ion-exchange chromatography, hydrophobic interaction chromatography and hydroxyapatite chromatography. The purified HPL preparation consisted of a single band and spot with a molecular mass of about 55 kDa as shown in SDS–PAGE and 2-D PAGE, respectively; the isoelectric point was found to be about 5.4. The maximum activity of the enzyme was observed at pH 6.0 and 25 °C, respectively. The HPL showed higher activity against 13-hydroperoxy-linolenic acid compared to 13-hydroperoxy-linoleic acid. K m value for 13-hydroperoxy-linolenic acid was 62.7 μM, and the corresponding V max was 178.5 μM min−1. The activity of HPL was significantly inhibited by nordihydroguaiaretic acid, HgCl2 and 2(E)-hexenal but not by EDTA and hexanal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Noordermeer MA, Veldink GA, Vliegenthart JFG (2001) Chembiochem 2:494–504

    Article  CAS  Google Scholar 

  2. Németh ÁŚ, Márczy JS, Samub Z, Ád Háger-Veress, Szajáni B (2004) Enzyme Microb Technol 34:667–672

    Article  Google Scholar 

  3. Matsui K (2006) Curr Opin Plant Biol 9:274–280

    Article  CAS  Google Scholar 

  4. Tressl R, Drawert F (1973) J Agric Food Chem 21(4):560–565

    Article  CAS  Google Scholar 

  5. Vick BA, Zimmerman DC (1976) Plant Physiol 57:780–788

    Article  CAS  Google Scholar 

  6. Matsui K, Toyota H, Kajiwara T, Kakuno T, Hatanaka A (1991) Phytochemistry 30:2109–2113

    Article  CAS  Google Scholar 

  7. Shibata Y, Matsui K, Kajiwara T, Hatanaka A (1995) Plant Physiol 36:147–156

    CAS  Google Scholar 

  8. Fauconnier ML, Perez AG, Sanz C, Marlier M (1997) J Agric Food Chem 45:4232–4236

    Article  CAS  Google Scholar 

  9. Hornostaj AR, Robinson DS (1999) Food Chem 66:173–180

    Article  CAS  Google Scholar 

  10. Itoh A, Vick BA (1999) Biochim Biophys Acta 1436:531–540

    CAS  Google Scholar 

  11. Tijet N, Waspi U, Gaskin DJ, Hunziker P, Muller BL, Vulfson EN, Slusarenko A, Brash AR, Whiteheade IM (2000) Lipids 35:709–720

    Article  CAS  Google Scholar 

  12. Mital G, Quartal A, Fasanol P, Paolisl AD, Sansebastiano GPD, Perrotta G, Iannacone R, Belfield E, Hughes R, Tsesmetzis N, Casey R, Santino A (2005) J Exp Bot 56(419):233–2321

    Google Scholar 

  13. Hughes RK, Belfield ER, Muthusamay M, Khan A, Rowe A, Harding SE, Fairhurst SA, Bornemann S, Ashton R, Thorneley RNF, Casey R (2006) Biochem J 395:641–652

    Article  CAS  Google Scholar 

  14. Noordermeer MA, Veldink GA, Vliegenthart JFG (2001) FEBS lett 489:229–232

    Article  CAS  Google Scholar 

  15. Grechkin AN, Hamberg M (2004) Biochim Biophys Acta 1636:47–58

    CAS  Google Scholar 

  16. Long Z, Kong XZ, Zhang CM, Hua YF (2010) J Sci Food Agric 90(5):729–734

    CAS  Google Scholar 

  17. Hill HD, Straka JG, Anal K (1988) Biochem 170:203–208

    CAS  Google Scholar 

  18. Vick BA (1991) Lipids 26:315–320

    Article  CAS  Google Scholar 

  19. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  Google Scholar 

  20. Lineweaver H, Burk D (1934) J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  21. Kim IS, Grosch W (1981) J Agric Food Chem 29:1220–1225

    Article  CAS  Google Scholar 

  22. Hornostaj AR, Robinson DS (2000) Food Chem 71:241–247

    Article  CAS  Google Scholar 

  23. Schreier P, Lorenz GZ (1982) Naturforsch 37:165–173

    Google Scholar 

  24. Gargouri M, Drouet P, Legoy MD (2004) J Biotechnol 111:59–65

    Article  CAS  Google Scholar 

  25. Olias JM, Rios JJ, Valle M, Zamora R, Sanz LC, Axelrod BA (1991) J Agric Food Chem 38:624–630

    Article  Google Scholar 

  26. Fernando T, Bean G (1984) Food Chem 15:233–237

    Article  CAS  Google Scholar 

  27. Perez AG, Sanz C, Olias R, Olias JM (1999) J Agric Food Chem 47:249–253

    Article  CAS  Google Scholar 

  28. Veldink GA, Vliegenthart JFG (1991) Stud Nat Prod Chem 9:559–589

    CAS  Google Scholar 

  29. Suurmeijer CNSP, Pérez-Gilabert M, van Unen DJ, van der Hijden HTWM, Veldink GA, Vliegenthart JFG (2000) Phytochemistry 53:177–185

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support received from National 863 Plans Project Foundation of P.R. China (2008AA10Z305 and 2008AA10Z312), National Natural Science Foundation of P.R. China (20876069) and Novozyme Research & Development Centre of P.R. China. The authors are also thankful for the support by the Fundamental Research Funds for the Central Universities (JUSRP10919).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufei Hua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, Z., Kong, X., Zhang, C. et al. Purification and characterization of hydroperoxide lyase from amaranth tricolor (Amaranthus mangostanus L.) leaves. Eur Food Res Technol 231, 865–871 (2010). https://doi.org/10.1007/s00217-010-1337-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-010-1337-0

Keywords