European Food Research and Technology

, Volume 231, Issue 1, pp 127–135 | Cite as

Evaluation of angiotensin I-converting enzyme (ACE) inhibitory activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates generated by gastrointestinal proteases: identification of the most potent active peptide

  • Ali Bougatef
  • Rafik Balti
  • Naïma Nedjar-Arroume
  • Rozenn Ravallec
  • Estelle Yaba Adjé
  • Nabil Souissi
  • Imen Lassoued
  • Didier Guillochon
  • Moncef Nasri
Original Paper


In this study, smooth hound protein hydrolysates (SHPHs), obtained by treatment with various gastrointestinal proteases, were analyzed for their angiotensin I-converting enzyme (ACE) inhibitory activities. Protein hydrolysates were obtained by treatment with crude alkaline enzyme extract, low molecular weight (LMW) alkaline protease, trypsin-like protease and pepsin from Mustelus mustelus, and bovine trypsin. All hydrolysates exhibited inhibitory activity toward ACE. Hydrolysate generated with alkaline protease extract displayed the highest ACE inhibitory activity, and the higher inhibition activity (82.6% at 2 mg/mL) was obtained with a hydrolysis degree of 18.8%. This hydrolysate was then fractionated by size exclusion chromatography on a Sephadex G-25 into five major fractions (P1–P5). ACE inhibitory activities of all fractions were assayed, and P3 was found to display a high ACE inhibitory activity (62.24% at 1 mg/mL). P3 was then fractionated by reversed-phase high-performance liquid chromatography (RP-HPLC) and ten fractions of ACE inhibitors were found (F1–F10). Sub-fraction F3 showed the strongest ACE inhibitory activity, being able to suppress more than 60% of initial enzyme activity at a concentration of 100 μg/mL. The amino acid sequence of peptide F3 was determined by ESI/MS and ESI–MS/MS as Ala-Gly-Ser, and the IC50 value for ACE inhibitory activity was 0.13 ± 0.03 mg/mL. Further, purified peptide F3 maintained inhibitory activity even after in vitro digestion with gastrointestinal proteases in order to demonstrate gastrointestinal stability digestion to enable oral application. These results indicate that smooth hound protein hydrolysate possesses potent antihypertensive activity.


Smooth hound muscle M. mustelus Intestine crude extract Enzymatic treatment ACE inhibitory activities Protein hydrolysates 



Smooth hound protein hydrolysate


Angiotensin-converting enzyme


Low molecular weight


Degree of hydrolysis



This work was funded by Ministry of Higher Education and Scientific Research-Tunisia.


  1. 1.
    Scheidegger KJ, Butler S, Witztum JL (1997) J Biochem Chem 272:21609–21615Google Scholar
  2. 2.
    Ondetti MA, Rubin B, Cushman DW (1982) Annu Rev Biochem 51:283–288CrossRefGoogle Scholar
  3. 3.
    Fujita H, Yokoyama K, Yoshikawa M (2000) J Food Sci 65:564–569CrossRefGoogle Scholar
  4. 4.
    Kuster DJ, Marshall GR (2005) J Comput Aided Mol Des 19:609–615CrossRefGoogle Scholar
  5. 5.
    Meisel H, Goepfert A, Guenther S (1997) Milchwissenschaft 52:307–311Google Scholar
  6. 6.
    Cheung HS, Wang FL, Miguel AO, Emily FS, David WC (1980) J. Biol Chem 255:401–407Google Scholar
  7. 7.
    Ferreira SH, Bartelt DC, Greene LJ (1970) Biochemistry 9:2583–2593CrossRefGoogle Scholar
  8. 8.
    Silva SV, Malcata FX (2005) Int Dairy J 15:1–15CrossRefGoogle Scholar
  9. 9.
    Marczak ED, Usui A, Fujita H, Yang Y, Yokoo M, Lipkowski AW et al (2003) Peptides 24:791–798CrossRefGoogle Scholar
  10. 10.
    Lee DH, Kim JH, Park JS, Choi YJ, Lee JS (2004) Peptides 25:621–627CrossRefGoogle Scholar
  11. 11.
    Vermeirssen VA (2004) Biochimie 86:231–239CrossRefGoogle Scholar
  12. 12.
    Arihara K, Nakashima Y, Mukai T, Ishikawa S, Itoh M (2001) Meat Sci 57:319–324CrossRefGoogle Scholar
  13. 13.
    Kim SK, Byun HG, Park PJ, Shahidi F (2001) J Agric Food Chem 49:2992–2997CrossRefGoogle Scholar
  14. 14.
    Kuba M, Tana C, Tawata S, Yasuda M (2005) Process Biochem 40:2191–2196CrossRefGoogle Scholar
  15. 15.
    Saito Y, Wanezaki K, Kawato A, Imayasu S (1994) Biosci Biotechnol Biochem 58:1767–1771CrossRefGoogle Scholar
  16. 16.
    Fahmi A, Morimura S, Guo HS, Shigematsu T, Kida K, Uemurac Y (2004) Process Biochem 39:1195–1200CrossRefGoogle Scholar
  17. 17.
    Bougatef A, Nedjar-Arroume N, Ravallec-Plé R, Leroy Y, Guillochon D, Barkia A, Nasri M (2008) Food Chem 111:350–356CrossRefGoogle Scholar
  18. 18.
    Hyun CK, Shin HK (2000) Process Biochem 36:65–71CrossRefGoogle Scholar
  19. 19.
    Yu Y, Hu J, Bai X, Du Y, Lin B (2006) Process Biochem 41:1589–1593CrossRefGoogle Scholar
  20. 20.
    Costa EL, Gontijo JAR, Netto FM (2007) Int Dairy J 17:632–640CrossRefGoogle Scholar
  21. 21.
    Matsui T, Matsufuji H, Seki E, Osajima K, Nakashima M, Osajima Y (1993) Biosci Biotechnol Biochem 57:922–925CrossRefGoogle Scholar
  22. 22.
    Bougatef A, Hajji M, Balti R, Lassoued I, Triki-Ellouz Y, Nasri M (2009) Food Chem 114:1198–1205CrossRefGoogle Scholar
  23. 23.
    Khantaphant S, Benjakul S (2008) Comp Biochem Physiol 151B:410–419Google Scholar
  24. 24.
    Bougatef A, Balti R, Ben Zaied S, Souissi N, Nasri M (2008) Food Chem 107:774–784CrossRefGoogle Scholar
  25. 25.
    Bougatef A, Jellouli K, Balti R, Haddar A, Triki-Ellouz Y, Barkia A, Nasri M (2008) In: Koeffer EN (ed) Progress in food chemistry. Nova Science, pp 183–199. ISBN: 978-1-60456-303-0Google Scholar
  26. 26.
    Bougatef A, Balti R, Jellouli K, Triki-Ellouz Y, Nasri M (2008) In Nasri M (ed) Recent research developments in food by-products technology and biotechnology. Research signpost, pp 1–19. ISBN: 978-81-308-0259-6Google Scholar
  27. 27.
    Kembhavi AA, Kulkarni A, Pant A (1993) Appl Biochem Biotechnol 38:83–92CrossRefGoogle Scholar
  28. 28.
    Adler-Nissen J (1986) In: Adler-Nissen J (eds) Enzymic hydrolysis of food proteins. Elsevier, Copenhagen, pp 57–109Google Scholar
  29. 29.
    Hoyle NT, Merritt JH (1994) J Food Sci 59:76–79CrossRefGoogle Scholar
  30. 30.
    Nakamura Y, Yamamoto N, Sakai K, Okubo A, Yamazaki S, Takano T (1995) J Dairy Sci 78:777–783CrossRefGoogle Scholar
  31. 31.
    Wu J, Ding X (2002) Food Res Int 35:367–375CrossRefGoogle Scholar
  32. 32.
    Kristinsson HG, Rasco BA (2000) J. Agric Food Chem 48:657–666CrossRefGoogle Scholar
  33. 33.
    van der Ven C, Gruppen H, de Bont DBA, Voragen AG (2002) J Int. Dairy J 12:813–820CrossRefGoogle Scholar
  34. 34.
    He HL, Chen XL, Wu H, Sun CY, Zhang YZ, Zhou BC (2007) Bioresour Technol 98:3499–3505CrossRefGoogle Scholar
  35. 35.
    Yokoyama K, Chiba H, Yoshikawa K, Chiba H, Yoshikawa M (1992) Biosci Biotech Biochem 56:1541–1545CrossRefGoogle Scholar
  36. 36.
    Ono S, Hosokawa M, Miyashita K, Takahashi K (2005) Int J Food Sci Technol 41:383–386Google Scholar
  37. 37.
    Matsufuji H, Matsui T, Seki E, Osajima K, Nakashima M, Osajima Y (1994) Biosci Biotech Biochem 58:2244–2245CrossRefGoogle Scholar
  38. 38.
    Panyam D, Kilara A (1996) Trends Food Sci. Technol. 7:120–125Google Scholar
  39. 39.
    Jérôme T, Laurent M, Jean-Luc G (2002) FEBS Lett 531:369–374CrossRefGoogle Scholar
  40. 40.
    Lee JR, Kwon DY, Shin HK, Yang CB (1999) Food Sci Biotechnol 8:172–178Google Scholar
  41. 41.
    Mullally MM, Meisel H, FitzGerald RJ (1997) FEBS Lett 402:99–101CrossRefGoogle Scholar
  42. 42.
    Meisel H (1997) Biopolymers 43:119–128CrossRefGoogle Scholar
  43. 43.
    Wu J, Ding X (2001) J Agric Food Chem 49:501–506CrossRefGoogle Scholar
  44. 44.
    Wu J, Aluko RE, Nakai S (2006) J Agric Food Chem 54:732–738CrossRefGoogle Scholar
  45. 45.
    Turner AJ, Hooper NM (1992) Trends Pharmacol Sci 23:177–183CrossRefGoogle Scholar
  46. 46.
    Gobbetti M, Ferranti P, Smacchi E, Goffredi F, Addeo F (2000) Appl Environ Microbiol 9:3898–3904CrossRefGoogle Scholar
  47. 47.
    Sheih IC, Fang TJ, Wu TK (2009) Food Chem 115:279–284CrossRefGoogle Scholar
  48. 48.
    Wang J, Hu J, Cui J, Xuefang B, Dua Y, Miyaguchi Y, Lin B (2008) Food Chem 111:302–308CrossRefGoogle Scholar
  49. 49.
    Je JY, Park PJ, Kwon JY, Kim SKA (2004) J. Agric Food Chem 52:7842–7845CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ali Bougatef
    • 1
  • Rafik Balti
    • 1
  • Naïma Nedjar-Arroume
    • 2
  • Rozenn Ravallec
    • 2
  • Estelle Yaba Adjé
    • 2
  • Nabil Souissi
    • 1
  • Imen Lassoued
    • 1
  • Didier Guillochon
    • 2
  • Moncef Nasri
    • 1
  1. 1.Laboratoire de Génie Enzymatique et de MicrobiologieEcole Nationale d’Ingénieurs de SfaxSfaxTunisia
  2. 2.Laboratoire de Procédés BiologiquesGénie Enzymatique et MicrobienVilleneuve d’Ascq CedexFrance

Personalised recommendations