Skip to main content
Log in

Detection of genetically modified soybean DNA in refined vegetable oils

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In this study, four different protocols were tested for their ability to extract DNA from blended refined vegetable oils: the in-house prepared Wizard and CTAB methods and the methods based on the use of the commercial kits Wizard® Magnetic DNA purification system for food and Nucleospin® for food. The performance of the extraction protocols was determined by end-point polymerase chain reaction (PCR) targeting the soybean lectin gene with primers suitable for the amplification of small fragments and confirmed by real-time PCR with specific hydrolysis probes. From the tested protocols, the Nucleospin method was the only one able to produce amplifiable DNA from refined vegetable oils. To verify the presence of Roundup Ready® (RR) soybean, event-specific primers were used for end-point PCR assays. The amplification of trace amounts of RR soybean by real-time PCR confirmed the label statements of two samples. The results highlight the importance of the DNA extraction protocol and the critical choice of PCR primers on processed food matrices, such as refined oils. Considering the few reports and difficulties pointed out in the literature to obtain amplifiable DNA from refined vegetable oils, the present results can be a step forward in the traceability of refined oils regarding authenticity issues and genetically modified organism detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. James C (2008) ISAAA Brief 39, accessible in http://www.ISAAA.org

  2. http://www.soystats.com/2008/page_35.htm. Accessed on the 14 of January of 2009

  3. Mafra I, Ferreira IMPLV, Oliveira MBPP (2008) Eur Food Res Technol 227:649–665

    Article  CAS  Google Scholar 

  4. Gryson N, Ronsse F, Messens K, De Loose M, Verleyen T, Dewettinck K (2002) JAOCS 79(2):171–174

    Article  CAS  Google Scholar 

  5. Gryson N, Messens K, Dewettinck K (2004) JAOCS 81(3):231–234

    Article  CAS  Google Scholar 

  6. Marioda A, Matthäusb B, Eichnerc K, Husseind IH (2006) Eur J Lipid Sci Technol 108:298–308

    Article  Google Scholar 

  7. Breton C, Claux D, Metton I, Skorski G, Bervillé A (2004) J Agric Food Chem 52:531–537

    Article  CAS  Google Scholar 

  8. Consolandi C, Palmieri L, Severgnini M, Maestri E, Marmiroli N, Agrimonti C, Baldoni L, Donini P, De Bellis G, Castiglioni G (2008) Eur Food Res Technol 227:1429–1438

    Article  CAS  Google Scholar 

  9. Doveri S, Sullivan DMO, Lee D (2006) J Agric Food Chem 54:9221–9226

    Article  CAS  Google Scholar 

  10. Martins-Lopes P, Gomes S, Santos E, Guedes-Pinto H (2008) J Agric Food Chem 56:11786–11791

    Article  CAS  Google Scholar 

  11. Muzzalupo I, Perri E (2002) Eur Food Res Technol 214:528–531

    Article  CAS  Google Scholar 

  12. Muzzalupo I, Pellegrino M, Perri E (2007) Eur Food Res Technol 224:469–475

    Article  CAS  Google Scholar 

  13. Hellebrand M, Nagy M, Mörsel JT (1998) Z Lebensm Unters Forsch A 206:237–242

    Article  CAS  Google Scholar 

  14. Pauli U, Liniger M, Zimmermann A (1998) Z Lebensm Unters Forsch A 207:264–267

    Article  CAS  Google Scholar 

  15. Bogani P, Minunni M, Spiriti MM, Zavaglia M, Tombelli S, Buiatti M, Mascini M (2009) Food Chem 113:658–664

    Article  CAS  Google Scholar 

  16. Doveri S, Lee D (2007) J Agric Food Chem 55:4640–4644

    Article  CAS  Google Scholar 

  17. Lipp M, Brodmann P, Pietsch K, Pauwels J, Anklam E (1999) J AOAC Int 82:923–928

    CAS  Google Scholar 

  18. Mafra I, Silva SA, Moreira EJMO, Silva CSF, Oliveira MBPP (2008) Food Control 19:1183–1190

    Article  CAS  Google Scholar 

  19. Querci M, Maretti M, Mazzara M (2006) Qualitative detection of MON810 maize, Bt-176 maize and Roundup Ready® soybean by PCR. In Querci M, Jermini M, Eede GV (eds) Training course on The Analysis of Food Samples for the Presence of Genetically Modified Organisms (Session 9). European Commission DG-JRC. Luxembourg: Office for Official Publications of the European Communities (http://gmotraining.jrc.it)

  20. Costa J, Mafra I, Amaral JS, Oliveira MBPP (2010) Food Res Int 43:301–306

    Article  CAS  Google Scholar 

  21. ISO 21570 (2005) Foodstuffs–Methods of analysis for the detection of genetically modified organisms and derived products–quantitative nucleic acid based methods, 1st ed. International Standard ISO 21570. ISO, Geneva

    Google Scholar 

  22. Corbisier P, Broothaerts W, Gioria S, Schimmel H, Burns M, Baoutin AA, Emslie KR, Furui S, Kurosawa Y, Holden MJ, Kim HH, Lee YM, Kawaharasaki M, Sin D, Wang J (2007) J Agric Food Chem 55:3249–3257

    Article  CAS  Google Scholar 

  23. Peano C, Lesignoli F, Gulli M, Corradini R, Samson MC, Marchelli R (2005) Anal Biochem 344(2):174–182

    CAS  Google Scholar 

  24. Pinto AD, Forte V, Guastadisegni MC, Martino C, Schena FP, Tantillo G (2007) Food Control 18:76–80

    Article  Google Scholar 

  25. Pasqualone A, Montemurro C, Summo C, Sabetta W, Caponio F, Blanco A (2007) J Agric Food Chem 55:3857–3862

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Mafra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, J., Mafra, I., Amaral, J.S. et al. Detection of genetically modified soybean DNA in refined vegetable oils. Eur Food Res Technol 230, 915–923 (2010). https://doi.org/10.1007/s00217-010-1238-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-010-1238-2

Keywords

Navigation