Advertisement

European Food Research and Technology

, Volume 231, Issue 1, pp 13–19 | Cite as

Production and characterization of angiotensin converting enzyme (ACE) inhibitory peptides from apricot (Prunus armeniaca L.) kernel protein hydrolysate

  • Zhenbao Zhu
  • Nongxue QiuEmail author
  • Jianhua Yi
Original Paper

Abstract

Six different proteases (Flavourzyme®, Neutrase®, Protamex®, Alcalase® 2.4L, Proleather® FG-F, and papain) were employed to hydrolyze apricot kernel protein (AKP). Alcalase® is an inexpensive and non-specific protease that has been shown to be useful for the generation of bioactive peptides from AKP. Alcalase® 2.4L was selected for further study on enzymatic preparation of ACE inhibitory peptide from AKP. After 60-min hydrolysis, the highest ACE inhibition was 82 ± 0.14%. Results of molecular weight distribution revealed that most of ACE inhibition activity was probably attributed to low-molecular weight peptide fraction ranging from 200 to 900 Da. Ultrafiltration on membranes with several molecular weight cutoffs (MWCFs) demonstrated that most of the ACE inhibitory activity was due to peptides with a less than 1,000 Da molecular weight: the IC50 value of the 1-kDa ultrafiltrate was 0.15 ± 0.007 mg mL−1, while it was 0.378 ± 0.015 mg mL−1 before ultrafiltration. Additionally, further separation and purification of the ACE inhibitory peptides were carried out using gel filtration and C18 RP-HPLC. The result of research can be used to optimize AKP enzymatic hydrolysis for producing ACE inhibitory peptides which could be used for food industry and nutraceuticals.

Keywords

Apricot kernel protein hydrolysate Angiotensin l-converting enzyme (ACE) Bioactive peptides Ultrafiltration Prunus armeniaca

Notes

Acknowledgments

This work has received financial support from project 2009JM 3021 (Shaanxi Province Basic Science Research). The authors express their appreciation to Professor Dai Jun (Jiangnan University) to determine peptides molecular weight distribution.

References

  1. 1.
    Abd El-Aal MH, Khalil MKM, Rahma EH (1986) Food Chem 19:287–298CrossRefGoogle Scholar
  2. 2.
    Durmaz G, Alpaslan M (2007) Food Chem 100:1177–1181CrossRefGoogle Scholar
  3. 3.
    Femenia A, Rossello C, Mulet A, Canellas J (1995) J Agric Food Chem 43:356–361CrossRefGoogle Scholar
  4. 4.
    El-Adawy TA, Rahma EH, El-Badawey AA, Gomaa MA, Lásztity R, Sarkadi L (1994) Nahrung 38:12–20CrossRefGoogle Scholar
  5. 5.
    World Health Organization (2003) Geneva, WHOGoogle Scholar
  6. 6.
    Murray BA, FitzGerald RJ (2007) Curr Pharm Des 13:773–791CrossRefGoogle Scholar
  7. 7.
    Cushman DW, Ondetti MA (1999) Nature Med 5:1110CrossRefGoogle Scholar
  8. 8.
    Vercruysse L, Van Camp J, Smagghe G (2005) J Agric Food Chem 53:8106–8115CrossRefGoogle Scholar
  9. 9.
    Jang A, Lee M (2005) Meat Sci 69:653–661CrossRefGoogle Scholar
  10. 10.
    Je J-Y, Park J-Y, Jung W-K, Park P-J, Kim S-K (2005) Food Chem 90:809–814CrossRefGoogle Scholar
  11. 11.
    Yu YK, Hu JN, Miyaguchi Y, Bai XF, Du YG, Lin BC (2006) Peptides 27:2950–2956CrossRefGoogle Scholar
  12. 12.
    Quirós A, Chichón R, Recio I, López-Fandiño R (2007) Food Chem 104:1734–1739CrossRefGoogle Scholar
  13. 13.
    Chen GW, Tsai JS, Sun Pan B (2007) Int Dairy J 17:641–647CrossRefGoogle Scholar
  14. 14.
    Wu JP, Ding XL (2002) Food Res Int 35:367–375CrossRefGoogle Scholar
  15. 15.
    Chiang WD, Tsou MJ, Tsai ZY, Tsai TC (2006) Food Chem 98:725–732CrossRefGoogle Scholar
  16. 16.
    Wu JP, Aluko RE, Muir AD (2008) Food Chem 111:942–950CrossRefGoogle Scholar
  17. 17.
    Sheih IC, Fang TJ, Wu TK (2009) Food Chem 115:279–284CrossRefGoogle Scholar
  18. 18.
    Sato M, Hosokawa T, Yamaguchi T, Nakano T, Muramoto K, Kahara T, Funayama K, Kobayashi A, Nakano T (2002) J Agric Food Chem 50:6245–6252CrossRefGoogle Scholar
  19. 19.
    Li GH, Wan JZ, Le GW, Shi YH (2006) J Pept Sci 12:509–514CrossRefGoogle Scholar
  20. 20.
    Adler-Nissen J (1986) Enzymatic hydrolysis of food proteins. Elsevier Applied Science Publishers, London, pp 116–124Google Scholar
  21. 21.
    Wu JP, Aluko RE, Muir AD (2002) J Chromatogr A 950:125–130CrossRefGoogle Scholar
  22. 22.
    Bradford MM (1976) Anal Biochem 72:248–254CrossRefGoogle Scholar
  23. 23.
    He HL, Chen XL, Wu H, Sun CY, Zhang YZ, Zhou BC (2007) Bioresour Technol 98:3499–3505Google Scholar
  24. 24.
    Yust MM, Pedroche J, Giron-Calle J, Alaiz M, Millan F, Vioque J (2003) Food Chem 81:363–369CrossRefGoogle Scholar
  25. 25.
    Pedroche J, Yust MM, Giron-Calle J, Alaiz M, Millan F, Vioque J (2002) J Sci Food Agric 82:960–965CrossRefGoogle Scholar
  26. 26.
    Byun H-G, Kim S-K (2001) Process Biochem 36:1155–1162CrossRefGoogle Scholar
  27. 27.
    Li GH, Le GW, Shi YH, Shrestha S (2004) Nutr Res 24:469–486Google Scholar
  28. 28.
    Korhonen H, Pihlanto A (2006) Int Dairy J 16:945–960CrossRefGoogle Scholar
  29. 29.
    Kapel R, Chabeau A, Lesage J, Riviere G, Ravallec-Ple R, Lecouturier D, Wartelle M, Guillochon D, Dhulster P (2006) Food Chem 98:120–126CrossRefGoogle Scholar
  30. 30.
    Wu JP, Aluko RE, Nakai S (2006) J Agric Food Chem 54:732–738CrossRefGoogle Scholar
  31. 31.
    Megias C, Yust MM, Pedroche J, Lquari H, Giron-Calle J, Alaiz M, Millan F, Vioque J (2004) J Agric Food Chem 52:1928–1932CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.College of Life ScienceShaanxi Normal UniversityXi’anChina
  2. 2.College of Life Science and EngineeringShaanxi University of Science and TechnologyXi’anChina
  3. 3.College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi’anChina

Personalised recommendations