Skip to main content
Log in

Health-promoting activities of ultra-filtered okara protein hydrolysates released by in vitro gastrointestinal digestion: identification of active peptide from soybean lipoxygenase

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Okara, a major by-product of the soymilk industry, which is rich in proteins, could possibly release under physiological conditions potential bioactive peptides. Thus, an okara protein isolate was digested sequentially with pepsin and pancreatin for c.a. 4 h. On the basis of its relatively high degree of hydrolysis and antioxidant activities (power reduction and radical scavenging activity), the okara protein hydrolysates at the end of the in vitro digestion were fractionated by ultra-filtration and the obtained ultra-filtered fractions were further tested for angiotensin-converting enzyme inhibition and multifunctional antioxidant activities. In the <1 kDa molecular weight cutoff ultra-fraction the amino acid sequence, TIIPLPV, of a peptide from soybean lipoxygenase-1 with a calculated mass 751.48 Da was identified using LC-ESI-MS/MS techniques. The hydrophobic amino acids present in this peptide, particularly Val at terminal position, could likely be associated with the relatively high health-promoting attributes tested. This study evidenced that the consumption of okara protein may exert health benefits on the basis of the bioavailability and bioactivity of the identified peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

255-min OPH:

Okara protein hydrolysate at the end (255 min) of the sequential pepsin plus pancreatin digestion

AA:

Amino acid

ABTS:

2,2′-Azino bis(3-ethylbenzothiazolin-6-sulfonate)

ACE:

Angiotensin-converting enzyme

ACE-I:

Angiotensin-converting enzyme inhibition

ANOVA:

One-way analysis of variance

dm:

Dry matter

DH:

Degree of hydrolysis

DPPH·:

Stable radical 2,2-diphenyl-1-picrylhydrazyl

FRAP:

Ferric reducing/antioxidant power

GI:

Gastrointestinal

GFC:

Gel filtration chromatography

HHL:

Hippuryl-l-histidyl-l-leucine

LC-ESI-MS/MS:

Liquid chromatography electrospray ionisation tandem mass spectrometry

LOX1.1:

Lipoxygenase-1 protein

MS:

Mass spectrometry

MW:

Molecular weight

MWCO:

Molecular weight cutoff

OPH:

Okara protein hydrolysate

ORACFL :

Oxygen radical absorbance capacity-fluorescein

RP:

Reduction power towards Fe(III)

RSA:

Radical scavenging activity

TBARS:

Thiobarbituric acid reactive substances

TE:

Trolox equivalent

TNBS:

Trinitrobenzenesulfonic acid

Trolox:

6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid

UF:

Ultra-filtered

References

  1. Erdmann K, Cheung BWY, Schröder H (2008) J Nutr Biochem 19:643–654

    Article  CAS  Google Scholar 

  2. Pihlanto A, Akkanen S, Korhonen HJ (2008) Food Chem 109:104–112

    Article  CAS  Google Scholar 

  3. Lo WMY, Li-Chan ECY (2005) J Agric Food Chem 53:3369–3376

    Article  CAS  Google Scholar 

  4. Ondetti MA, Cushman DW (1982) Annu Rev Biochem 51:283–308

    Article  CAS  Google Scholar 

  5. Wu J, Ding X (2001) J Agric Food Chem 49:501–506

    Article  CAS  Google Scholar 

  6. Finkel T, Holbrook NJ (2000) Nature 408:239–247

    Article  CAS  Google Scholar 

  7. Katayama M, Wilson LA (2008) J Food Sci 73:S152–S157

    Article  CAS  Google Scholar 

  8. O’Toole DK (1999) J Agric Food Chem 47:363–371

    Article  Google Scholar 

  9. Surel O, Couplet B (2005) J Sci Food Agric 85:1343–1349

    Article  CAS  Google Scholar 

  10. Préstamo G, Rupérez P, Espinosa-Martos I, Villanueva MJ, Lasunción MA (2007) Eur Food Res Technol 225:925–928

    Article  Google Scholar 

  11. Erdman JW Jr, Badger TM, Lampe JW, Setchell KDR, Messina M (2004) J Nutr 134:1229S–1233S

    Google Scholar 

  12. Jiménez-Escrig A, Tenorio MD, Espinosa-Martos I, Rupérez P (2008) J Agric Food Chem 56:7495–7501

    Article  Google Scholar 

  13. Vermeirssen V, Van Camp J, Devos L, Verstraete W (2003) J Agric Food Chem 51:5680–5687

    Article  CAS  Google Scholar 

  14. Clemente A, Vioque J, Sánchez-Vioque R, Pedroche J, Bautista J, Millán F (1999) Food Chem 67:269–274

    Article  CAS  Google Scholar 

  15. Megías C, Yust MM, Pedroche J, Lquari H, Girón-Calle J, Alaiz M, Millán F, Vioque J (2004) J Agric Food Chem 52:1928–1932

    Article  Google Scholar 

  16. Adler-Nissen J (1979) J Agric Food Chem 27:1256–1262

    Article  CAS  Google Scholar 

  17. Megías C, Pedroche J, Yust MM, Girón-Calle J, Alaiz M, Millán F, Vioque J (2008) LWT Food Sci Technol 41:1973–1977

    Article  Google Scholar 

  18. Benzie IFF, Strain JJ (1996) Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  19. Pulido R, Jiménez-Escrig A, Orensanz L, Saura-Calixto F, Jiménez-Escrig A (2005) Eur J Neurol 12:531–535

    Article  CAS  Google Scholar 

  20. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Free Rad Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  21. Jiménez-Escrig A, Dragsted LO, Daneshvar B, Pulido R, Saura-Calixto F (2003) J Agric Food Chem 51:5540–5545

    Article  Google Scholar 

  22. Megías C, Pedroche J, Yust MM, Alaiz M, Girón-Calle J, Millán F, Vioque J (2006) J Agric Food Chem 54:4641–4645

    Article  Google Scholar 

  23. Cushman DW, Cheung HS (1971) Biochem Pharmacol 20:1637–1648

    Article  CAS  Google Scholar 

  24. Alcaide-Hidalgo JM, Pueyo E, Polo MC, Martínez-Rodríguez AJ (2007) J Food Sci 72:M276–M279

    Article  CAS  Google Scholar 

  25. Alaiz M, Navarro JL, Girón J, Vioque E (1992) J Chromatogr 591:181–186

    Article  CAS  Google Scholar 

  26. Cabezón V, Llama-Palacios A, Nombela C, Monteoliva L, Gil C (2009) Proteomics 9:4770–4786

    Article  Google Scholar 

  27. Ma CY, Liu WS, Kwok KC, Kwok F (1996) Food Res Int 29:799–805

    Article  CAS  Google Scholar 

  28. Wang W, Rupasinghe SG, Schuler MA, De Mejia EG (2008) J Agric Food Chem 56:6267–6277

    Article  CAS  Google Scholar 

  29. Ou B, Huang D, Hampsch-Woodill M, Flanagan JA, Deemer EK (2002) J Agric Food Chem 50:3122–3128

    Article  CAS  Google Scholar 

  30. Moure A, Domínguez H, Parajó JC (2006) Process Biochem 41:447–456

    Article  CAS  Google Scholar 

  31. Theodore AE, Raghavan S, Kristinsson HG (2008) J Agric Food Chem 56:7459–7466

    Article  CAS  Google Scholar 

  32. Zhu L, Jie C, Tang X, Xiong YL (2008) J Agric Food Chem 56:2714–2721

    Article  CAS  Google Scholar 

  33. Van Der Ven C, Gruppen H, De Bont DBA, Voragen AGJ (2002) Int Dairy J 12:813–820

    Article  Google Scholar 

  34. Cho MJ, Unklesbay N, Hsieh F, Clarke AD (2004) J Agric Food Chem 52:5895–5901

    Article  CAS  Google Scholar 

  35. Li X, Han L, Chen L (2008) J Sci Food Agric 88:1660–1666

    Article  CAS  Google Scholar 

  36. Cheison SC, Wang Z, Xu S (2007) J Agric Food Chem 55:3896–3904

    Article  CAS  Google Scholar 

  37. Virtanen T, Pihlanto A, Akkanen S, Korhonen H (2007) J Appl Microbiol 102:106–115

    Article  CAS  Google Scholar 

  38. Peña-Ramos EA, Xiong YL, Arteaga GE (2004) J Sci Food Agric 84:1908–1918

    Article  Google Scholar 

  39. Bruni R, Gianfranceschi G, Koch G (2005) J Pept Sci 11:225–234

    Article  CAS  Google Scholar 

  40. UNIPROTKB. Protein Knowledgebase. http://www.uniprot.org/uniprot/P08170. Accessed Nov 2009

  41. BRENDA. The comprehensive enzyme information system. http://www.brenda-enzymes.org. Accessed Nov 2009

  42. Lehninger AL (1995) Bioquímica. Omega S.A, Barcelona, Spain

    Google Scholar 

  43. Ren J, Zhao M, Shi J, Wang J, Jiang Y, Cui C, Kakuda Y, Xue SJ (2008) Food Chem 108:727–736

    Article  CAS  Google Scholar 

  44. Suetsuna K, Ukeda H, Ochi H (2000) J Nutr Biochem 11:128–131

    Article  CAS  Google Scholar 

  45. Wang W, Bringe NA, Berhow MA, De Mejia EG (2008) J Agric Food Chem 56:4012–4020

    Article  CAS  Google Scholar 

  46. Hernández-Ledesma B, Recio I, Amigo L (2008) Amino Acids 35:257–265

    Article  Google Scholar 

  47. Jiménez-Escrig A (2007) Int J Food Sci Nutr 58:629–636

    Article  Google Scholar 

Download references

Acknowledgments

The Spanish Ministry of Science and Innovation through Research Projects AGL2008-0998 and AGL2007-63580, and the European Union through FEDER funds supported this research. Thanks are given to M. Takazumi from Toofu-Ya S.L. for the okara provided. A J-E acknowledges Professor F. Millán for the opportunity and facilities given during his short-term scientific mission to learn the methodology of bioactive peptides at the Instituto de la Grasa, CSIC. The proteomics work was done at the Proteomics Facility UCM-PCM, a member of ProteoRed network, funded by Genoma España.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Jiménez-Escrig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez-Escrig, A., Alaiz, M., Vioque, J. et al. Health-promoting activities of ultra-filtered okara protein hydrolysates released by in vitro gastrointestinal digestion: identification of active peptide from soybean lipoxygenase. Eur Food Res Technol 230, 655–663 (2010). https://doi.org/10.1007/s00217-009-1203-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-009-1203-0

Keywords

Navigation