Skip to main content

Anthocyanins, flavonols and hydroxycinnamates: an attempt to use them to discriminate Vitis vinifera L. cv ‘Barbera’ clones

Abstract

Anthocyanin and flavonol profiles of Vitis vinifera berry skin have been diffusely studied in past years to identify the effects exerted by climate, environment and cultural practices on their biosynthesis. They have also been used for chemotaxonomic purposes with the aim of classifying grape varieties. Hydroxycinnamates and phenolic acids are the most important group of non-flavonoid phenols in grapes and wines. In the present work six ‘Barbera’ clones were grown in the same site to evaluate the influence of two seasons on the accumulation of flavonoids and hydroxycinnamates at maturity. Berry skins were extracted in an ethanolic buffer and flavonoids and hydroxycinnamates were separated by HPLC. Two principal component analysis (PCA) models were built to identify phenolic parameters exploitable to classify clones. The PCA scores were taken further to perform discriminant analysis to evaluate the degree of classification possible. A significant seasonal variability was observed for most phenolic features, whereas some parameters such as total anthocyanin expressed on a per berry basis, the sum of tri-hydroxylated anthocyanin percentages, the percentages of kaempferol glucuronide and the total hydroxycinnamate content were stable over the seasons. The percentage of individual anthocyanin alone, not associated with maturity data, was not effective in classifying clones; in association with maturity data it allowed to discriminate clones, similarly to what it was previously assessed for classifying varieties. The results indicated that LDA models developed on the PCA scores including maturity data correctly classified 75% of clones.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adams DO (2006) Am J Enol Vitic 57:249–256

    CAS  Google Scholar 

  2. Ribérau-Gayon P (1964) Ann Physiol Vég 6:211–242

    Google Scholar 

  3. Boss PK, Davies C, Robinson SP (1996) Plant Physiol 111:1059–1066

    CAS  Google Scholar 

  4. Bogs J, Ebadi A, McDavid D et al (2006) Plant Physiol 140:279–291

    Article  CAS  Google Scholar 

  5. Downey MO, Harvey JS, Robinson SP (2003) Aust J Grape Wine Res 9:110–121

    Article  CAS  Google Scholar 

  6. Yamane T, Jeong ST, Yamamoto NG et al (2006) Am J Enol Vitic 57:54–59

    CAS  Google Scholar 

  7. Guidoni S, Ferrandino A, Novello V (2008) Am J Enol Vitic 59:22–29

    CAS  Google Scholar 

  8. Mazza G, Fukumoto L, Delaquis P et al (1999) J Agric Food Chem 47:4009–4017

    Article  CAS  Google Scholar 

  9. Núñez V, Monagas M, Gomez-Cordovés MC et al (2004) Postharvest Biol Technol 31:69–79

    Google Scholar 

  10. Roggero JP, Larice JL, Rocheville-Divore C et al (1988) Rev Fr Oenol 112:41–48

    Google Scholar 

  11. González-Neves G, Gómez-Cordovés C, Barreiro L (2001) J Wine Res 12:125–133

    Article  Google Scholar 

  12. Boulton R (2001) Am J Enol Vitic 52:67–87

    CAS  Google Scholar 

  13. Scharbert S, Hofmann T (2005) J Agric Food Chem 53:5377–5384

    Article  CAS  Google Scholar 

  14. Montoro P, Braca A, Pizza MP et al (2005) Food Chem 92:349–355

    Article  CAS  Google Scholar 

  15. Cheynier V, Rigaud J (1986) Am J Enol Vitic 37:248–252

    CAS  Google Scholar 

  16. Price SF, Breen PJ, Valalladao M et al (1995) Am J Enol Vitic 46:187–194

    CAS  Google Scholar 

  17. Mattivi F, Guzzon R, Vrhovsek U et al (2006) J Agric Food Chem 54:7692–7702

    Article  CAS  Google Scholar 

  18. Castillo-Muñoz N, Gomez-Alonso S, Garcia–Romero E et al (2007) J Agric Food Chem 55:992–1002

    Article  Google Scholar 

  19. Romero I, Sanchez-Ballesta MT, Escribano MI et al (2008) Postharvest Biol Technol 49:1–9

    Article  CAS  Google Scholar 

  20. Cortell MJ, Kennedy JA (2006) J Agric Food Chem 54:8510–8520

    Article  CAS  Google Scholar 

  21. Singleton VL, Zaya J, Trousdale EK (1986) Phytochemistry 25:2127–2133

    Article  CAS  Google Scholar 

  22. Romeyer F, Macheix JJ, Goiffon JP et al (1983) J Agric Food Chem 31:346–349

    Article  CAS  Google Scholar 

  23. Falchi M, Bertelli A, lo Scalzo R et al (2006) J Agric Food Chem 56:6613–6622

    Article  Google Scholar 

  24. Di Stefano R, Maggiorotto G (1995) Riv Vitic Enol 2:51–65

    Google Scholar 

  25. Di Stefano R, Cravero MC (1992) Sci Aliment 12:139–144

    CAS  Google Scholar 

  26. Brossaud F, Cheynier V, Asselin C et al (1999) Am J Enol Vitic 50:277–284

    CAS  Google Scholar 

  27. Cuny M, le Gall G, Colquhoun IJ et al (2007) Anal Chim Acta 597:203–213

    Article  CAS  Google Scholar 

  28. Di Stefano R, Borsa D, Bosso A et al (2000) L’Enologo Dic 2000:73–76

    Google Scholar 

  29. Di Stefano R, Mattivi F, Caburazzi M et al (2008) Riv Vitic Enol 1:39–61

    Google Scholar 

  30. Haselgrove L, Botting D, Van Heeswijck R et al (2000) Aust J Grape Wine Res 6:141–149

    Article  CAS  Google Scholar 

  31. Bergqvist J, Dokoozlian N, Ebisuda N (2001) Am J Enol Vitic 52:1–7

    CAS  Google Scholar 

  32. Spayd SE, Tarara JM, Mee DL et al (2002) Am J Enol Vitic 53:171–182

    CAS  Google Scholar 

  33. Downey MO, Dokoozlian NK, Krstic MP (2006) Am J Enol Vitic 3:257–268

    Google Scholar 

  34. Guidoni S, Ferrandino A, Novello V (2007) Italus Hortus 14:199–203

    Google Scholar 

Download references

Acknowledgments

Authors thank Dr. Franco Mannini (IVV, CNR, Grugliasco, TO), selector of some of the studied clones, for providing the grapes. For an overview about the agronomic characteristics of clones please refer to: A. Schneider and F. Mannini, ‘Vitigni del Piemonte’, Varietà e cloni, Supplemento n. 50 “Quaderni della Regione Piemonte–Agricoltura”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Ferrandino.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferrandino, A., Guidoni, S. Anthocyanins, flavonols and hydroxycinnamates: an attempt to use them to discriminate Vitis vinifera L. cv ‘Barbera’ clones. Eur Food Res Technol 230, 417 (2010). https://doi.org/10.1007/s00217-009-1180-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00217-009-1180-3

Keywords

  • Principal component analysis
  • Linear discriminant analysis
  • Berry skins