European Food Research and Technology

, Volume 230, Issue 2, pp 217–229 | Cite as

Influence of chemical composition of olive oil on the development of volatile compounds during frying

  • Giuseppe Procida
  • Angelo Cichelli
  • Dario Compagnone
  • Rubén M. Maggio
  • Lorenzo CerretaniEmail author
  • Michele Del CarloEmail author
Original Paper


In this study, 15 virgin olive oils from an industrial oil plant in the Abruzzo region were analyzed in terms of the volatile compounds responsible for the characteristic odor and olfactory perception of virgin olive oils and its modification upon frying (up to 60 min of heat treatment). Dynamic headspace–gas chromatography–mass spectrometry analysis was used to evaluate the volatile profile before and after each frying step and examine correlations with qualitative characteristic of oil (fatty acid composition, total phenolic compound content, tocopherols and pigments). The chemometric approach (genetic algorithms–partial least squares/multiple linear regression) developed for this study is a novel model for data treatment to select important variables in olive oil composition and understand their influence on spoilage during frying. An inverse correlation between oleic acid content and formation of toxic volatiles such as acrolein and crotonal during frying was demonstrated. Moreover, it was also observed that pigments such as chlorophylls, pheophytins, and carotenoids may prevent the formation of some aldehydes during frying.


Virgin olive oil Volatile compounds Frying Degradation Safety Acrolein Chemometric 


  1. 1.
    Pedreschi F, Moyano P, Kaack K, Granby K (2005) Food Res Int 38:1–9CrossRefGoogle Scholar
  2. 2.
    Varela G, Ruiz-Roso B (1992) Nutr Rev 50:256–262CrossRefGoogle Scholar
  3. 3.
    Tyagi VK, Vasishtha AK (1996) J Am Oil Chem Soc 73:499–506CrossRefGoogle Scholar
  4. 4.
    Keijbets MJH (2001) In: Rossell JB (ed) Frying: improving quality. CRC Press LLC, Boca Raton, FLGoogle Scholar
  5. 5.
    Carrasco-Pancorbo A, Cerretani L, Bendini A, Segura-Carretero A, Lercker G, Fernández-Gutiérrez A (2007) J Agric Food Chem 55:4771–4780CrossRefGoogle Scholar
  6. 6.
    López-Varela S, Sánchez-Muniz FJ, Cuesta C (1995) Food Chem Toxicol 33:181–185CrossRefGoogle Scholar
  7. 7.
    Billek G (1979) Nutr Metab 24:200–210Google Scholar
  8. 8.
    Kahl R, Hildebrandt AG (1986) Food Chem Toxicol 24:1007–1014CrossRefGoogle Scholar
  9. 9.
    Neilsen HK, Finot PA, Hurrell RF (1985) Br J Nutr 53:75–86CrossRefGoogle Scholar
  10. 10.
    Parzefall W (2008) Food Chem Toxicol 46:1360–1364CrossRefGoogle Scholar
  11. 11.
    IARC (1994) IARC monographs on the evaluation of carcinogenic risks to humans, vol 60. WHO, Some Industrial Chemicals, Acrylamide, pp 389–433Google Scholar
  12. 12.
    Joint FAO/WHO Expert Committee on Food Additives (JECFA) (2005) vol 64/SC. pp 1–41
  13. 13.
    Bendini A, Cerretani L, Vecchi S, Carrasco-Pancorbo A, Lercker G (2006) J Agric Food Chem 54:4880–4887CrossRefGoogle Scholar
  14. 14.
    Barcarolo R, Casson P (2007) J High Resol Chromatogr 20:24–28CrossRefGoogle Scholar
  15. 15.
    Dobarganes MC (1998) Ol Corps Gras Lipides 5:41–47Google Scholar
  16. 16.
    Aparicio R, Roda L, Albi MA, Gutiérrez F (1999) J Agric Food Chem 47:4150–4155CrossRefGoogle Scholar
  17. 17.
    Napolitano A, Morales F, Sacchi R, Fogliano V (2008) J Agric Food Chem 56:2034–2040CrossRefGoogle Scholar
  18. 18.
    Han SH, Yang H (2004) Int J Ind Ergonom 33:159–171CrossRefGoogle Scholar
  19. 19.
    Wonnacott TH, Wonnacott RJ (1981) Regression: a second course in statistics. Wiley, New YorkGoogle Scholar
  20. 20.
    European Community, Commission Regulation No 2568/91/EEC, July 11 (1991) Off J Eur Commun L248:1–83Google Scholar
  21. 21.
    Del Carlo M, Saccheti G, Di Mattia C, Compagnone D, Mastrocola D, Liberatore L, Cichelli A (2004) J Agric Food Chem 52:4072–4079CrossRefGoogle Scholar
  22. 22.
    Singleton VL, Rossi JA (1965) Am J Enol Vitic 16:144–158Google Scholar
  23. 23.
    Mínguez-Mosquera MI, Gandul-Rojas B, Gallardo-Guerrero L (1992) J Agric Food Chem 40:60–63CrossRefGoogle Scholar
  24. 24.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice Evans C (1999) Free Radic Biol Med 26:1231–1237CrossRefGoogle Scholar
  25. 25.
    Christie WW (1998) In: Christie WW (ed) Gas chromatography and lipids. The Oily Press, Ayr, Scotland, pp 64–84Google Scholar
  26. 26.
    Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Publishing Company, Reading, MAGoogle Scholar
  27. 27.
    Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, MIGoogle Scholar
  28. 28.
    Hasegawa K, Miyashita Y, Funatsu K (1997) J Chem Inf Comput Sci 37:306–310Google Scholar
  29. 29.
    Martens H, Naes T (1989) Multivariate calibration. Wiley, ChichesterGoogle Scholar
  30. 30.
    Thomas EV (1994) Anal Chem 66:795A–804ACrossRefGoogle Scholar
  31. 31.
    Geladi P, Kowalski BR (1986) Anal Chim Acta 185:1–17CrossRefGoogle Scholar
  32. 32.
    Haaland DM, Thomas EV (1988) Anal Chem 60:1193–1202CrossRefGoogle Scholar
  33. 33.
    Leardi R, Boggia R, Terrile M (1992) J Chemom 6:267–281CrossRefGoogle Scholar
  34. 34.
    Leardi R, Lupiáñez A (1998) Chemolab 41:195–207Google Scholar
  35. 35.
    Du H, Watzl J, Wang J, Zhang X, Yao X, Hu Z (2008) J Sep Sci 31:2325–2333CrossRefGoogle Scholar
  36. 36.
    Li X, Luan F, Si H, Hu Z, Liu M (2007) Toxicol Lett 175:136–144CrossRefGoogle Scholar
  37. 37.
    Freedman DA (1983) Am Stat 27:152–155CrossRefGoogle Scholar
  38. 38.
    Leonard JT, Roy K (2008) Eur J Med Chem 43:81–92CrossRefGoogle Scholar
  39. 39.
    European Community, Commission Regulation No. 1989/2003/EC, November 6 (2003) Off J Eur Commun L295:57–77Google Scholar
  40. 40.
    Mateos R, Dominguez MM, Espartero JL, Cert A (2003) J Agric Food Chem 51:7170–7175CrossRefGoogle Scholar
  41. 41.
    Cerretani L, Bendini A, Del Caro A, Piga A, Vacca V, Caboni MF, Gallina-Toschi T (2006) Eur Food Res Technol 222:354–361CrossRefGoogle Scholar
  42. 42.
    Cerretani L, Lerma-García MJ, Herrero-Martínez JM, Gallina-Toschi T, Simó-Alfonso EF (2009) (submitted for publication)Google Scholar
  43. 43.
    Boskou D, Blekas G, Tsimidou M (2006) In: Boskou D (ed) Olive oil chemistry and technology, 2nd edn. American Oil Chemists’ Society, Champaign, IL, pp 41–72Google Scholar
  44. 44.
    Cerretani L, Motilva MJ, Romero MP, Bendini A, Lercker G (2008) Eur Food Res Technol 226:1251–1258CrossRefGoogle Scholar
  45. 45.
    Aparicio R, Morales MT (1998) J Agric Food Chem 46:1116–1122CrossRefGoogle Scholar
  46. 46.
    Williams M, Salas JJ, Sanchez J, Harwood JL (2000) Phytochemistry 53:13–19CrossRefGoogle Scholar
  47. 47.
    Zunin P, Boggia R, Lanteri S, Leardi R, De Andreis R, Evangelisti F (2004) J Chromatogr A 1023:271–276CrossRefGoogle Scholar
  48. 48.
    Morales MT, Luna G, Aparicio R (2005) Food Chem 91:293–301CrossRefGoogle Scholar
  49. 49.
    Faroon O, Roney N, Taylor J, Ashizawa A, Lumpkin MH, Plewak DJ (2008) Toxicol Ind Health 24:447–490CrossRefGoogle Scholar
  50. 50.
    Li L, Holian A (1998) Rev Environ Health 13:99–108Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Giuseppe Procida
    • 1
  • Angelo Cichelli
    • 2
  • Dario Compagnone
    • 3
  • Rubén M. Maggio
    • 4
  • Lorenzo Cerretani
    • 5
    Email author
  • Michele Del Carlo
    • 3
    Email author
  1. 1.Dipartimento dei Materiali e delle Risorse NaturaliUniversità di TriesteTriesteItaly
  2. 2.DASTA, Università G. d’Annunzio Chieti-PescaraPescaraItaly
  3. 3.Dipartimento di Scienze degli AlimentiUniversità di TeramoMosciano Stazione (TE)Italy
  4. 4.Departamento de Química Analítica, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario and Instituto de Química Rosario, (CONICET-UNR)Rosario (S2002LRK)Argentina
  5. 5.Dipartimento di Scienze degli AlimentiUniversità di BolognaCesena (FC)Italy

Personalised recommendations