Skip to main content

Evaluation of antimicrobial and proteolytic activity of enterococci isolated from fermented products

Abstract

A collection of 26 enterococci isolated from dairy and meat products were tested for antimicrobial and proteolytic activity. Enterococcus faecium and E. faecalis were the most frequent species among tested enterococci, and 11 isolates produced antimicrobial compounds. Results revealed that 10 out of 11 enterococci synthesized enterocins showing antimicrobial activity against food-born pathogen such as Listeria monocytogenes and Staphylococcus aureus. The broadest spectrum of antimicrobial activity was detected in E. faecalis BGPT1-10P and BGPT1-78. E. faecalis BG221 showed antimicrobial activity that was not related to production of enterocin, H2O2 or organic acid. Twenty-five enterococci showed strong or moderate proteolytic activity towards β-casein. Two isolates, BGPT1-10P and BGPT1-78, showed the most intense hydrolysis of αs1-, β-, κ-casein fractions, total casein as well as gelatin. Extracellular BGPT1-10P and BGPT1-78 proteinases have a molecular mass of about 29 kDa. Bacteriocin production and proteinase activity of natural isolates of enterococci may be of technological interest in dairy and meat-fermented products.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Giraffa G (2003) Int J Food Microbiol 88:215–222

    Article  CAS  Google Scholar 

  2. Hugas M, Garriga M, Aymerich T (2003) Int J Food Microbiol 88:223–233

    Article  CAS  Google Scholar 

  3. Mannu L, Paba A, Daga E, Comunian R, Zanetti S, Dupre I, Sechi LA (2003) Int J Food Microbiol 88:291–304

    Article  CAS  Google Scholar 

  4. Tskalidou E, Manolopoulou E, Tsilibari V, Georgalaki M, Kalantzopoulous G (1993) Neth Milk Dairy J 45:145–150

    Google Scholar 

  5. Centeno JA, Menendez S, Hermida M, Rodriguez-Otero JL (1999) Int J Food Microbiol 48:97–111

    Article  CAS  Google Scholar 

  6. Foulquié Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L (2006) Int J Food Microbiol 106:1–24

    Article  Google Scholar 

  7. Ogier J, Serror CP (2008) Int J Food Microbiol 126:291–301

    Article  CAS  Google Scholar 

  8. Giraffa G (1995) Food Microbiol 18:551–556

    Google Scholar 

  9. Sarantinopoulus P, Kalantzopoulous G, Tsakalidou E (2002) Int J Food Microbiol 76:93–105

    Article  Google Scholar 

  10. Psoni L, Kotzamanides C, Andrighetto C, Lombardi A, Tzanetakis N, Litopoulou-Tzanetakis E (2006) Int J Food Microbiol 109:109–120

    Article  CAS  Google Scholar 

  11. Coppola TM, Parente JE, Dumontet S, La Peccerella A (1998) Lait 68:295–310

    Article  Google Scholar 

  12. Martin B, Garriga M, Hugas M, Aymerich T (2004) J Appl Microbiol 98:1177–1190

    Article  Google Scholar 

  13. Nes IF, Diep DB, Holo H (2007) J Bacteriol 189:1189–1198

    Article  CAS  Google Scholar 

  14. Franz CMAP, van Belkum MJ, Holzapfel WH, Abriouel H, Gálvez A (2007) FEMS Microbiol Rev 31:293–310

    Article  CAS  Google Scholar 

  15. Callewaert R, Hugas M, De Vuyst L (2000) Int J Food Microbiol 57:33–42

    Article  CAS  Google Scholar 

  16. Cintas LM, Casaus P, Herraz C, Havarstein LS, Helge H, Hernandez P, Nes IF (2000) J Bacteriol 182:6806–6814

    Article  CAS  Google Scholar 

  17. Nes IF, Diep DB, Havărstein LS, Brurberg MB, Eijsin V, Holo H (1996) In: Venema G, Huis Veld JHJ, Hugenholtz J (eds) Lactic acid bacteria: genetics, metabolism and applications. Kluwer, The Netherlands, pp 17–32

    Google Scholar 

  18. Klaenhammer TR (1993) FEMS Microbiol Rev 12:39–86

    CAS  Google Scholar 

  19. Mannu L, Riu G, Comunian R, Frozzi MC, Scintu MF (2002) Int Dairy J 12:17–26

    Article  CAS  Google Scholar 

  20. Valenzuela AS, Ben Omar N, Abriouel H, Lópes RL, Veljovic K, Caňamero MM, Kojic M, Topisirovic L, Gálvez A (2009) Food Control 20:381–385

    Article  CAS  Google Scholar 

  21. Veljovic K, Terzic-Vidojevic A, Vukasinovic M, Strahinic I, Begovic J, Lozo J, Ostojic M, Topisirovic L (2007) J Appl Microbiol 103:2142–2152

    Article  CAS  Google Scholar 

  22. Harris LJ, Daeschel M, Stiles ME, Klaenhammer TR (1989) J Food Prot 52:384–387

    Google Scholar 

  23. Tagg JR, Given Mc AR (1971) Appl Microbiol 21:943

    CAS  Google Scholar 

  24. Gajic O, Kojic M, Banina A, Topisirovic L (1999) Arch Biol Sci 51:69–78

    Google Scholar 

  25. Strahinic I, Begovic J, Fira D, Ostojic M, Topisirovic (2005) Genetika 37:77–87

    Article  CAS  Google Scholar 

  26. Kojic M, Svircevic M, Banina A, Topisirovic L (1991) Appl Environ Microbiol 57:1835–1837

    Google Scholar 

  27. Vujcic M, Topisirovic L (1993) Appl Environ Microbiol 59:274–280

    CAS  Google Scholar 

  28. Lozo J, Vukasinovic M, Strahinic I, Topisirovic L (2004) J Food Prot 67:2727–2734

    CAS  Google Scholar 

  29. Fira D, Kojic M, Strahinic I, Arsenijevic S, Banina A, Topisirovic L (2000) Arch Biol Sci 52:67–76

    Google Scholar 

  30. Strus M, Kucharska A, Kukla G, Brzychczy-Wloch M, Maresz K, Heczko PB (2005) Infect Dis Obstet Gynecol 13:69–75

    Article  Google Scholar 

  31. Kojic M, Fira D, Banina A, Topisirovic L (1991) Appl Environ Microbiol 57:1753–1757

    CAS  Google Scholar 

  32. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    CAS  Google Scholar 

  33. Macfarlane GT, Macfarlane S (1992) Appl Environ Microbiol 58:1195–1200

    CAS  Google Scholar 

  34. Lopes MFS, Simões AP, Tenreiro R, Marques JJF, Crespo MTB (2006) Int J Food Microbiol 112:208–214

    Article  CAS  Google Scholar 

  35. Aymerich TH, Holo LS, Havarstein M, Hugas Garriga M, Nes IF (1996) Appl Environ Microbiol 62:1676–1682

    CAS  Google Scholar 

  36. Franz CMAP, Schillinger U, Holzapfel WH (1996) Int J Food Microbiol 65:2170–2178

    Google Scholar 

  37. Hawes SE, Hillier SL, Benedetti J, Stevens CE, Kousty LA, Wolner-Hanssen P, Holmes KK (1996) J Infect Dis 174:1058–1063

    CAS  Google Scholar 

  38. Centeno JA, Cepeda A, Rodriguez-Otero JL (1995) Nahrung 39:55–62

    Article  Google Scholar 

  39. Mohamed JA, Huang DB (2007) J Med Microbiol 56:1581–1588

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Institute of Meat Hygiene and Technology, Belgrade for providing the Listeria monocytogenes ATCC 19111 strains. This work was funded by Ministry of Science and Technological Development of Republic of Serbia, grant No. 143036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljubisa Topisirovic.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Veljovic, K., Fira, D., Terzic-Vidojevic, A. et al. Evaluation of antimicrobial and proteolytic activity of enterococci isolated from fermented products. Eur Food Res Technol 230, 63–70 (2009). https://doi.org/10.1007/s00217-009-1137-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-009-1137-6

Keywords

  • Enterococci
  • Antimicrobial activity
  • Enterocins
  • Proteolytic activity