Skip to main content
Log in

Residual effect of atomised water vapour treatment on carbohydrate metabolism during ripening of cv “Fino de Jete” cherimoya fruit

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Atomised hot water vapour at between 46 and 54 °C for 60 min was tested as a method of delaying ripening and extending shelf life in cv “Fino de Jete” cherimoya fruit (Annona cherimola Mill.). Heat treatment at 46 °C stimulated the respiration rate and starch degradation, induced ethylene production, increased the accumulation of soluble sugars and α-amylase activity, and moved the onset of ethylene production (OEP) forward. Treatment at 50 °C, and especially at 52 °C, delayed the climacteric peak and the OEP, decreased sugar and organic acid accumulation, and reduced α-amylase and invertase activity. The results obtained indicate that temperatures higher than 48 °C slowed physiological processes and carbohydrate metabolism and extend the shelf life of the cherimoya fruits, while temperatures higher than 52 °C blocked ripening irreversibly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alique R, Zamorano JP (2000) J Agric Food Chem 48:4209–4216

    Article  CAS  Google Scholar 

  2. Sánchez JA, Zamorano JP, Alique R (1994) J Hort Sci Biotech 73:87–92

    Google Scholar 

  3. Sola MM, Gutiérrez M, Vargas AM (1994) J Plant Physiol 144:569–575

    Google Scholar 

  4. Alique R, Zamorano JP, Calvo ML, Merodio C, De La Plaza JL (1994) J Am Soc Hort Sci 119:524–528

    CAS  Google Scholar 

  5. Areas JAG, Lajolo FM (1981) J Food Biochem 5:19–37

    Article  Google Scholar 

  6. García E, Lajolo FM (1988) J Food Sci 53:1181–1186

    Article  Google Scholar 

  7. Prabha TN, Bhagyalakshmi N (1988) Phytochemistry 48:915–919

    Article  Google Scholar 

  8. Wegrzyn T, McRae E (1995) J Plant Physiol 147:19–28

    CAS  Google Scholar 

  9. Irving DE, Hurst PL, Ragg J (1997) J Am Soc Hort Sci 122:310–314

    CAS  Google Scholar 

  10. Irving DE, Shingleton GJ, Hurst PL (1999) J Am Soc Hort Sci 124:587–590

    CAS  Google Scholar 

  11. Jacobi KK, McRae E, Hetherington SE (2000) Postharvest Biol Technol 21:39–49

    Article  Google Scholar 

  12. Inaba M, Chachin K (1988) HortScience 23:190–192

    Google Scholar 

  13. Paull RE, Chen NJ (1990) J Am Soc Hort Sci 115:623–631

    Google Scholar 

  14. Klein JD, Lurie S (1991) Postharvest News Inf 2:15–19

    Google Scholar 

  15. Mitcham EJ, McDonald RE (1993) Postharvest Biol Technol 3:77–86

    Article  CAS  Google Scholar 

  16. Lurie S (1998) Postharvest Biol Technol 14:257–269

    Article  Google Scholar 

  17. Lingle SE, Lester GE, Dunlap JR (1987) J Am Soc Hort Sci 22:917–919

    CAS  Google Scholar 

  18. Esguerra EB, Brena SR, Reyes MU, Lizada MCC (1990) Acta Hort 269:425–434

    Google Scholar 

  19. Alique R, Zamorano JP, Martínez MA, Alonso J (2005) Postharvest Biol Technol 35:153–165

    Article  CAS  Google Scholar 

  20. Alique R, Oliveira GS (1994) J Agric Food Chem 42:799–803

    Article  CAS  Google Scholar 

  21. Haissig BE, Dickson RE (1979) Plant Physiol 47:151–157

    Article  CAS  Google Scholar 

  22. Morrison TA, Pressey R, Kays SJ (1993) J Am Soc Hort Sci 118:236–242

    CAS  Google Scholar 

  23. Mitchman EJ, Clayton M, Biasi WV (1998) HortScience 33:723–727

    Google Scholar 

  24. Goñi O, Escribano MI, Merodio C (2008) LWT 41:303–310

    Article  Google Scholar 

  25. Lurie S, Klein JD (1991) J Am Soc Hort Sci 116:1007–1012

    Google Scholar 

  26. Antunes MD, Stakiotakis EM (2000) Postharvest Biol Technol 20:251–259

    Article  CAS  Google Scholar 

  27. Inaba M, Chachin K (1989) J Am Soc Hort Sci 114:809–814

    Google Scholar 

  28. Fallik E, Tuvia-Alkalai S, Feng X, Lurie S (2001) Food Sci Emerg Technol 2:127–132

    Article  Google Scholar 

  29. Abu-Kpawoh JC, Xi YF, Zhang YZ (2002) J Food Sci 67:2649–2653

    Article  CAS  Google Scholar 

  30. Yu YB, Adams DO, Yang SF (1980) Plant Physiol 66:286–290

    Article  CAS  Google Scholar 

  31. Biggs MS, Woodson WR, Handa KA (1988) Plant Physiol 72:572–578

    Article  CAS  Google Scholar 

  32. Dunlap JR, Lingle SE, Lester GE (1990) HortScience 25:207–209

    CAS  Google Scholar 

  33. Ketsa S, Chidtragool S, Klein JD, Lurie S (1999) Postharvest Biol Technol 15:65–72

    Article  CAS  Google Scholar 

  34. Lahoz JM, Gutierrez M, Sola M, Salto R, Pascual L, Martínez Cayuela M, Vargas A (1993) J Agric Food Chem 41:721–723

    Article  CAS  Google Scholar 

  35. Martínez G, Serrano M, Pretel MT, Riquelme F, Romajaro F (1993) J Hort Sci 68:477–483

    Google Scholar 

  36. Joyce DC, Shorter AJ (1994) HortScience 29:1047–1051

    Google Scholar 

  37. Chitarra AB, Lajolo FM (1981) J Am Soc Hort Sci 196:579–584

    Google Scholar 

  38. Hill SA, Rees T (1994) Planta 192:52–60

    CAS  Google Scholar 

  39. Jeffery D, Smith C, Goodenough P, Grierson D (1984) Plant Physiol 74:32–38

    Article  CAS  Google Scholar 

  40. Rustin P, Moreau F, Lance C (1980) Plant Physiol 66:457–462

    Article  CAS  Google Scholar 

  41. Lance C (1981) In: Friend J, Rhodes MJC (eds) Recent advances in the biochemistry of fruits and vegetables. Academic Press, New York, pp 63–87

    Google Scholar 

  42. Matsui T, Kitagawa H (1990) J Jpn Soc Food Sci Technol 37:224–229

    CAS  Google Scholar 

  43. McRae EA, Quick WP, Benker C, Stitt M (1992) Planta 188:314–323

    Google Scholar 

  44. Jacobi KK, McRae E, Hetherington SE (2001) Sci Hort 89:171–193

    Article  Google Scholar 

  45. Zhou T, Xu S, Sun D, Wang Z (2002) J Food Eng 5:17–22

    Article  Google Scholar 

  46. Diaz-Pérez JC, Mejía A, Bautista S, Zavaleta R, Villanueva R, Gomez R (2001) Postharvest Biol Technol 22:159–169

    Article  Google Scholar 

  47. Leverentz B, Conway WS, Janisiewicz WJ, Saftner RA, Camp MJ (2003) Postharvest Biol Technol 27:221–233

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grant ALI96-1207-CO2-01 from the Comisión Interministerial de Ciencia y Tecnología [Interministerial Science and Technology Commission], CICYT (Spain). The authors thank Delfina Carrero for laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Alique.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alique, R., Luna, P., Hernández, T. et al. Residual effect of atomised water vapour treatment on carbohydrate metabolism during ripening of cv “Fino de Jete” cherimoya fruit. Eur Food Res Technol 229, 661–669 (2009). https://doi.org/10.1007/s00217-009-1094-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-009-1094-0

Keywords

Navigation