Skip to main content
Log in

Significance of structuring/prebiotic blends on bread dough thermo-mechanical profile

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The present research was undertaken to explore the significance of structuring/prebiotic blends on bread dough rheological performance during mixing, fermentation, resting, cooking and cooling stages of breadmaking simulation. Carboxymethylcellulose and locust bean gum, and prebiotic oligosaccharides were used to replace wheat flour at 10% substitution level. The impact of fibre replacement on bread dough linear and nonlinear rheological/functional performances was investigated by mechanical and thermo-mechanical approaches. Dietary fibre effect on dough microstructure was also studied. Significant variation among samples in terms of dough strength as a consequence of the different structuring agents used was found. Neither inuline nor gluco-oligosaccharides were able to modify the general trends marked for carboxymethylcellulose and/or locust bean gum. Reported data suggested the feasibility of locust bean and carboxymethylcellulose, as thickening and structuring agents for baking industry. The microstructure of control bread dough with no added fibres differs greatly from that of structuring/prebiotic supplemented samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Burey P, Bhandari BR, Howes T, Gidley MJ (2008) Crit Rev Food Sci Nutr 48:361–377

    Article  CAS  Google Scholar 

  2. Selomulyo VO, Zhou W (2007) J Cereal Sci 45:1–17

    Article  CAS  Google Scholar 

  3. Redgwell RG, Fisher M (2005) Mol Nutr Food Res 49:521–535

    Article  Google Scholar 

  4. Gibson GR, Roberfroid M (1995) J Nutr 125:1401–1412

    CAS  Google Scholar 

  5. Collar C (2008) Chapter 9. In: Hamaker BR. CRC Press, Boca Raton

  6. Autio K, Salmenkallio-Marttila M (2001) Food Sci Technol 34:18–22

    CAS  Google Scholar 

  7. Dobraszczyk BJ, Morgenstern MP (2003) J Cereal Sci 38:229–245

    Article  CAS  Google Scholar 

  8. Collar C (2003) Eur Food Res Technol 216:505–513

    CAS  Google Scholar 

  9. Collar C, Bollain C, Rosell CM (2007) Food Sci Technol Int 13(2):99–107

    Article  CAS  Google Scholar 

  10. Angioloni A, Collar C (2008) Food Res Int 41(8):803–812

    Article  CAS  Google Scholar 

  11. Angioloni A, Collar C (2009) J Food Eng 91:526–532

    Article  CAS  Google Scholar 

  12. Angioloni A, Collar C (2009) Food Hydrocoll 23:42–748

    Article  Google Scholar 

  13. ICC (1976–1996) Standard methods of the International Association for Cereal Chemistry. 104/1, 105/2, 107/1, 110/1, 115/1, 121, 136, 155 and 162. The Association, Vienna

  14. Hoseney RC, Chen WZ (1994) US Patent 5,280,616

  15. Armero E, Collar C (1997) Z Lebensm Unters Forsch 204:136–145

    Article  CAS  Google Scholar 

  16. Collar C, Martínez JC, Andreu P, Armero E (2000) Food Sci Technol Int 6(3):217–226

    Article  CAS  Google Scholar 

  17. Smewing J (1995) Stable Micro Systems Ltd, Surrey

  18. Peleg M (1979) J Food Sci 44:277–281

    Article  Google Scholar 

  19. Peleg M, Pollak NT (1982) J Texture Stud 13:1–11

    Article  Google Scholar 

  20. Singh H, Rockall A, Martin CR, Chung OK, Lookhart GL (2006) J Texture Stud 37:383–392

    Article  Google Scholar 

  21. Robertson GH, Cao TK, Wood DF (2000) Cereal Chem 77(4):439–444

    Article  CAS  Google Scholar 

  22. Collar C, Bollain C (2005) Eur Food Res Technol 220:372–379

    Article  CAS  Google Scholar 

  23. Bollaín C, Angioloni A, Collar C (2006) J Food Eng 77(3):665–671

    Article  Google Scholar 

  24. Sliwinski EL, Kolster P, van Vliet T (2004) J Cereal Sci 39:231–245

    Article  Google Scholar 

  25. Rosell CM, Collar C, Haros M (2007) Food Hydrocoll 21:452–462

    Article  CAS  Google Scholar 

  26. Xiaohong S, BeMiller JN (2002) Carbohydr Polym 50:7–18

    Article  Google Scholar 

  27. Gan J, Rafael LGB, Cato L, Small DM (2002) Proceedings of the 51st Australian Cereal Chemistry Conference, pp 304–308

  28. Cato L, Rafael LGB, Gan J, Small DM (2002) Proceedings of the 51st Australian Cereal Chemistry Conference, pp 304-308

  29. Gallagher E, Gormley TR, Arendt EK (2004) Trends Food Sci Technol 15:143–152

    Article  CAS  Google Scholar 

  30. Lazaridou A, Duta D, Papageorgiou M, Belc N, Biliaderis CG (2007) J Food Eng 79:1033–1047

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial support of the Ministerio de Ciencia e Innovación (Project AGL2008-00092/ALI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concha Collar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angioloni, A., Collar, C. Significance of structuring/prebiotic blends on bread dough thermo-mechanical profile. Eur Food Res Technol 229, 603–610 (2009). https://doi.org/10.1007/s00217-009-1090-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-009-1090-4

Keywords

Navigation