Sourdough fermentation as a tool for the manufacture of low-glycemic index white wheat bread enriched in dietary fibre

Abstract

Three Lactobacillus strains were selected and used together as sourdough starter. Sourdough performances were evaluated for 30 days. Three breads were manufactured: wheat sourdough bread (WSB), WSB enriched with oat and rye fibres (WSB-DF) and wheat yeasted bread (WYB) fermented with baker’s yeast alone. WSB-DF and WSB showed higher specific volume and lower firmness than WYB. Sensory analysis showed that WSB-DF and WSB were preferred due to acidulous smell, taste and aroma. Compared to WYB and WSB, WSB-DF had high level of dietary fibre (DF). WYB was used as the control to estimate the hydrolysis index (HI = 100). WSB-DF had values of HI lower than WSB (59 vs. 86%). As estimated on 20 volunteers, the value of GI for WSB-DF was ca. 41%. WSB-DF bread manufactured at industrial plant combined low-GI with physiologically significant supply of DF and high standard structure and sensory features.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

GI:

Glycemic index

WSB:

Wheat sourdough bread

WYB:

Wheat flour fermented with baker’s yeast

WSB-DF:

Wheat flour enriched with oat and rye fibres and fermented with defined multi-species sourdough starter

HI:

Hydrolysis index

DF:

Dietary fibre

IAUC:

Incremental area under the blood glucose curve

CVD:

Cardiovascular disease

References

  1. 1.

    Jenkins DJ, Kendall CW, Augustin LS, Francesci S, Hamidi M, Marchie A, Jekins AL, Axelsen M (2002) Am J Clin Nutr 76:266–273

    Google Scholar 

  2. 2.

    Björck IEM, Liljeberg HGM (2003) Proc Nutr Soc 62:201–206

    Article  Google Scholar 

  3. 3.

    Yamada Y, Hosoya S, Nishimura S, Tanaka T, Kajimoto Y, Nishimura A, Kajimoto O (2005) Biosci Biotechnol Biochem 69:559–566

    Article  CAS  Google Scholar 

  4. 4.

    Li J, Wang J, Kaneko T, Qin LQ, Sato A (2004) Nutrition 20:1003–1007

    Article  CAS  Google Scholar 

  5. 5.

    Ludwig D (2000) J Nutr 130:280S–283S

    CAS  Google Scholar 

  6. 6.

    Austin LS, Gallus S, Bosetti C, Levi F, Negri E, Francescani S, Dak Maso L, Jenkins DJ, Kendal CW, La Vecchia C (2003) Int J Can 105:404–407

    Article  Google Scholar 

  7. 7.

    Jenkins DJ, Wolever TM, Ocana AM, Vuksan V, Cunnane SC, Jenkins M, Wong GS, Singer W, Bloom SR, Blendis LM et al (1990) Diabetes 39:775–781

    Article  CAS  Google Scholar 

  8. 8.

    Venter CS, Vorster HH, Cummings JH (1990) Am J Gastroenterol 85:549–553

    CAS  Google Scholar 

  9. 9.

    Wolever TM, Brighenti F, Royall D (1989) Am J Gastroenterol 84:1027–1037

    CAS  Google Scholar 

  10. 10.

    Katina K (2005) Academic Dissertation, VTT Biotechnology, Helsinki

  11. 11.

    Jenkins DJA, Axelsen M, Kendall CWC, Augustin LSA, Vuksan V, Smith U (2000) Br J Nutr 83:157–163

    Article  Google Scholar 

  12. 12.

    De Angelis M, Rizzello CG, Alfonsi G, Arnault P, Cappelle S, Tossut P, Di Cagno R, Gobbetti M (2007) Br J Nutr 98:1196–1205

    Google Scholar 

  13. 13.

    De Angelis M, Di Cagno R, Gallo G, Curci M, Siragusa S, Crecchio C, Parente E, Gobbetti M (2007) Int J Food Microbiol 114:69–82

    Article  Google Scholar 

  14. 14.

    Siragusa S, Di Cagno R, Ercolini D, Minervini F, Gobbetti M, De Angelis M (2009) Appl Environ Microbiol 75:1099–1109

    Article  CAS  Google Scholar 

  15. 15.

    De Angelis M, Siragusa S, Berloco M, Caputo L, Settanni L, Alfonsi G, Amerio M, Grandi A, Ragni A, Gobbetti M (2006) Res Microbiol 157:792–801

    Article  Google Scholar 

  16. 16.

    Corsetti A, De Angelis M, Dellaglio F, Paparella A, Settanni L, Gobbetti M (2003) J Appl Microbiol 94:641–654

    Article  CAS  Google Scholar 

  17. 17.

    Esteller M, Zancanaro O, Santos Palmeira CN, Caetano da Silva Lannes S (2006) Eur Food Res Technol 222:26–31

    Article  CAS  Google Scholar 

  18. 18.

    Sapirstein HD, Roller R, Bushuk W (1994) Cereal Chem 71:383–391

    Google Scholar 

  19. 19.

    Knuckles BE, Hudson CA, Chiu MM, Sayre RN (1997) Cereal Foods World 42:94–99

    Google Scholar 

  20. 20.

    Haglund Å, Johansson L, Dahlstedt L (1998) J Cereal Sci 27:199–207

    Article  Google Scholar 

  21. 21.

    Liljeberg HGM, Akerberg A, Björck IME (1996) Food Chem 56:389–394

    Article  CAS  Google Scholar 

  22. 22.

    El SN (1999) Food Chem 6:67–69

    Google Scholar 

  23. 23.

    Gobbetti M, De Angelis M, Corsetti A, Di Cagno R (2005) Trends Food Sci Technol 16:57–69

    Article  CAS  Google Scholar 

  24. 24.

    Kedia G, Vàzquez JA, Pandiella SS (2008) J Appl Microbiol 105:1227–1237

    Article  CAS  Google Scholar 

  25. 25.

    Vasiljevic T, Kealy T, Mishra VK (2007) J Food Sci 72:405–411

    Article  Google Scholar 

  26. 26.

    Hammes WP, Gaenzle MG (1998) In: Woods BJB (ed) Microbiology of fermented foods. Blackie Academic/Professional, London, UK, pp 199–216

    Google Scholar 

  27. 27.

    Bourdon I, Yokoyama W, Davis P, Hudson C, Backus R, Richter D, Knuckles B, Schneeman BO (1999) Am J Clin Nutr 69:55–63

    CAS  Google Scholar 

  28. 28.

    Liljerberg HGM, Björck IME (1998) Eur J Clin Nutr 52:368–371

    Article  Google Scholar 

  29. 29.

    Åkerberg A, Liljeberg H, Björck I (1998) J Cereal Sci 28:71–80

    Article  Google Scholar 

  30. 30.

    Östman EM, Fri AH, Groop LC, Biörck IME (2006) Eur J Clin Nutr 60:334–341

    Article  Google Scholar 

  31. 31.

    Östman EM, Nilsson M, Liljeberg Elmstahl HGM, Molinm G, Björck IME (2002) J Cereal Sci 36:339–346

    Article  Google Scholar 

  32. 32.

    Bornet FRJ, Jardy-Gennetier AE, Jacquet N, Stowell J (2007) Appetite 49:535–553

    Article  CAS  Google Scholar 

  33. 33.

    Bran-Miller J, Hayne S, Petocz P, Colagiuri S (2003) Diabetes Care 26:2261–2267

    Article  Google Scholar 

  34. 34.

    WHO/FAO expert consultation (2004) WHO Technical Report Series 916

  35. 35.

    Brennan CS, Clearly LJ (2007) Food Res Intern 40:291–296

    Article  CAS  Google Scholar 

  36. 36.

    Jeya C, Henry K, Lightowler HJ, Newens KJ, Pata N (2007) Int J Food Sci Nutr 59:61–69

    Article  Google Scholar 

  37. 37.

    Maioli M, Pes GM, Sanna M, Cerchi S, Dettori M, Manca E, Farris GM (2008) Acta Diabetol 45:91–96

    Article  CAS  Google Scholar 

  38. 38.

    Van der Meulen R, Scheirlinck I, Van Schoor A, Huys G, Vancanneyt M, Vandamme P, De Vuyst L (2007) Appl Environ Microbiol 73:4741–4750

    Article  Google Scholar 

  39. 39.

    Burton P, Lightowler HJ (2007) Eur J Clin Nutr 4:1–6

    Google Scholar 

  40. 40.

    Rizkalla SW, Laromiguiere M, Champ M, Bruzzo F, Boillot J, Slama G (2007) Eur J Clin Nutr 61:175–183

    Article  CAS  Google Scholar 

  41. 41.

    Liljeberg H, Björck I (1994) Eur J Clin Nutr 48:151–163

    CAS  Google Scholar 

  42. 42.

    Foster-Powell K, Susan HA, Janette C, Brand-Miller (2002) AJCN 76:5–56

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marco Gobbetti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

De Angelis, M., Damiano, N., Rizzello, C.G. et al. Sourdough fermentation as a tool for the manufacture of low-glycemic index white wheat bread enriched in dietary fibre. Eur Food Res Technol 229, 593–601 (2009). https://doi.org/10.1007/s00217-009-1085-1

Download citation

Keywords

  • Bread
  • Dietary fibre
  • GI
  • Sourdough