Skip to main content
Log in

Acrylamide formation in a cookie system as influenced by the oil phenol profile and degree of oxidation

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the effect of the olive oil phenolic compounds as well as of thermoxidised oil on the formation of acrylamide in a cookies system. Three virgin olive oils having different phenolic profile and a thermoxidised sunflower oil were selected. Cookies were baked at 190 °C for different times (8–16 min) following a basic recipe where type of oil was the variable. Additionally to acrylamide (AA), other parameters such as colour, moisture, antioxidant activity (AOA), and hydroxymethylfurfural (HMF) were measured. Results showed that concentration and composition of phenolic moiety of virgin olive oil significantly affect the acrylamide formation, particularly at prolonged baking time. Virgin olive oil with a higher dihydroxy/monohydroxy ratio was more efficient in the AA mitigation and AA was reduced up to 20%. Colour and AOA were not significantly different among the three types of oils. However, AA is dramatically increased when thermoxidised oil is used with a parallel increase of browning and HMF. It was concluded that lipid oxidation products should be considered as an important factor in acrylamide formation during baking of fat-rich products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. LoPachin RM, Lehning EJ (1994) Neurotox 15:247–260

    CAS  Google Scholar 

  2. Friedman MA, Dulak LH, Stedham AM (1995) Fund Appl Toxicol 27:95–105

    Article  CAS  Google Scholar 

  3. Segerbäck D, Callemann J, Schroeder JL, Costa LG, Faustman EM (1995) Carcinogenesis 16:1161–1165

    Article  Google Scholar 

  4. RC IA (1994) Acrylamide. International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  5. Tareke E, Rydberg P, Karlsson P, Eriksson S, Tornqvist M (2002) J Agric Food Chem 50:4998–5006

    Article  CAS  Google Scholar 

  6. WHO/JECFA (2005) 64th meeting, Rome, 7–17 Feb 2005. http://www.who.int/ipcs/food/jecfa/summaries/en/summary_report_64_final.pdf

  7. Boon PE, Mul A, van der Voet H, van Donkersgoed G, Brette M, van Klaveren JD (2005) Mutat Res Genet Toxicol Environ Mutagenesis 580:143–155

    Article  CAS  Google Scholar 

  8. Becalski A, Lau BPY, Lewis D, Seaman SW (2003) J Agric Food Chem 51:802–808

    Article  CAS  Google Scholar 

  9. Yaylayan VA, Wnorowski A, Perez-Locas C (2003) J Agric Food Chem 51:1753–1757

    Article  CAS  Google Scholar 

  10. Gertz C, Klostermann S (2002) Eur J Lipid Sci Technol 104:762–771

    Article  CAS  Google Scholar 

  11. Umano K, Shibamoto T (1987) J Agric Food Chem 35:909–912

    Article  CAS  Google Scholar 

  12. CIAA (2007) Confederation of the Food and Drink Industries in the UE. The CIAA acrylamide “Toolbox”. Rev. 11, December, 2007. http://www.ciaa.be/documents/brochures/toolbox%20rev11%nov%202007final.pdf

  13. Morales F, Capuano E, Fogliano V (2008) Ann N Y Acad Sci 1126:89–100

    Article  CAS  Google Scholar 

  14. Claus A, Carle R, Schieber A (2008) J Cereal Sci 47:118–133

    Article  CAS  Google Scholar 

  15. Friedman M, Levin CE (2008) J Agric Food Chem 56:6113–6140

    Article  CAS  Google Scholar 

  16. Tareke E. (2003) PhD thesis, Department of Environmental Chemistry, Stockholm University, Sweden

  17. Vattem DA, Shetty K (2003) Innov Food Sci Emerg Technol 4:331–338

    Article  CAS  Google Scholar 

  18. Rydberg P, Eriksson S, Tareke E, Karlsson P, Ehrenberg L, Tornqvist M (2003) J Agric Food Chem 51:7012–7018

    Article  CAS  Google Scholar 

  19. Zamora R, Hidalgo F (2008) J Agric Food Chem 56:6075–6080

    Article  CAS  Google Scholar 

  20. Mestdagh F, De Meulenaer B, Van Peteghem C (2007) Food Chem 100:1153–1159

    Article  CAS  Google Scholar 

  21. Hedegaard RV, Granby K, Franden H, Thygesen J, Leif HS (2008) Eur Food Res Technol 227:519–525

    Article  CAS  Google Scholar 

  22. Gökmen V, Acar OC, Koksel H, Acar J (2007) Food Chem 104:1136–1142

    Article  Google Scholar 

  23. Summa C, Wenzl T, Brohee M, De la Calle B, Anklam E (2006) J Agric Food Chem 54:853–859

    Article  CAS  Google Scholar 

  24. Napolitano A, Morales F, Sacchi R, Fogliano V (2008) J Agric Food Chem 56:2034–2040

    Article  CAS  Google Scholar 

  25. Visioli F, Galli C (1998) J Agric Food Chem 46:4292–4296

    Article  CAS  Google Scholar 

  26. Persson E, Graziani G, Ferracane R, Fogliano V, Skog K (2003) Food Chem Toxicol 41:1587–1597

    Article  CAS  Google Scholar 

  27. AOAC Official Methods of Analysis (1980) 13th edn, Association of Official Analytical Chemists, Washington, DC, pp 440–441

  28. Fee JA, Teitelbaum HD (1972) Biochem Biophys Res Commun 49:150–153

    Article  CAS  Google Scholar 

  29. Cortesi N, Ponziani A, Fedeli E (1981) Rivista-Italiana-delle-Sostanze-Grasse 58:108–114

    CAS  Google Scholar 

  30. Singleton VL, Rossi A (1965) Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  31. Psomiadou E, Tsimidou M, Boskou D (2000) J Agric Food Chem 48:1770–1775

    Article  CAS  Google Scholar 

  32. Monti SM, Ritieni A, Sacchi R, Skog K, Borgen E, Fogliano V (2001) J Agric Food Chem 49:3969–3975

    Article  CAS  Google Scholar 

  33. Rufián-Henares JA, Arribas-Lorenzo G, Morales FJ (2007) Food Addit Contam 24:343–350

    Article  Google Scholar 

  34. Morales FJ, Arribas-Lorenzo G (2008) Food Chem 109:421–425

    Article  CAS  Google Scholar 

  35. García-Villanova B, Guerra-Hernández E, Martinez-Gómez E, Montilla J (1993) J Agric Food Chem 41:1254–1255

    Article  Google Scholar 

  36. Serpen A, Gökmen V, Pellegrini N, Fogliano V (2008) J Cer Sci 48:816–820

    Article  CAS  Google Scholar 

  37. Association of Official Analytical Chemists AOAC (1995) Official methods of the association of official analytical chemists, 16th edn. Washington, DC

  38. CIE Colorimetric Committee (1974) Technical notes: working program on colour differences. J Op Soc Am 64:896–897

    Google Scholar 

  39. Francis FJ, Clydesdale FH (1975) Food colorimetry theory and applications. AVI Publishing, Wesport, CT, pp 131–224

    Google Scholar 

  40. Gökmen V, Acar OC, Arribas-Lorenzo G, Morales FJ (2008) J Food Eng 87:380–385

    Article  Google Scholar 

  41. Taeymans J, Wood P, Ashby I, Blank A, Studer RH, Stadler P, Gondé P, Van Eijck S, Lalljie H, Lingnert M, Lindblom R, Matissek D, Müller D, Tallmadge J, O’Brien S, Thompson D, Whitmore T (2004) Crit Rev Food Sci Nutr 44:323–347

    Article  CAS  Google Scholar 

  42. AOCS (1998) In: Firestone D (ed) Method Cd 8–53. Official methods and recommended practices of the American Oil Chemists’ Society, 5th edn. American Oil Chemists’ Society, Champaign, IL

  43. Zamora R, Hidalgo FJ (2005) Crit Rev Food Sci Nutr 45:49–59

    Article  CAS  Google Scholar 

  44. Ehling S, Hengel M, Shibamoto T (2005) In: Friedman M, Mottram DS (eds) Chemistry and safety of acrylamide in food. Springer, New York, pp 223–233

  45. Yuan Y, Zhao G-H, Hu X-S, Wu J-H, Liu J, Chen F (2008) Eur Food Res Technol 226:1301–1307

    Article  CAS  Google Scholar 

  46. Frankel EN, Huang S-H, Aeschbach R, Prior E (1996) J Agric Food Chem 44:131–135

    Article  CAS  Google Scholar 

  47. Frenkel EN (2005) Lipid oxidation, 2nd edn, Chap 4. The Oily Press, Bridgwater

  48. Gertz C (2004) Eur J Lipid Sci Technol 106:736–745

    Article  CAS  Google Scholar 

  49. Nawar WW (1998) Grasas y Aceites 49:271–274

    CAS  Google Scholar 

  50. Ait-Ameur L, Rega B, Giampaoli P, Trystram G, Birlouez-Aragon I (2008) Food Chem 111:758–763

    Article  CAS  Google Scholar 

  51. Hidalgo FJ, Zamora R (2004) J Agric Food Chem 52:7126–7131

    Article  CAS  Google Scholar 

  52. Gertz C, Klostermann S, Kochhar SP (2003) Oleagineux Corps Gras Lipides 10:297–303

    CAS  Google Scholar 

  53. Mestdagh M, Castelein P, Van Peteghem C, De Meulenaer B (2008) J Agric Food Chem 65:6141–6144

    Article  Google Scholar 

  54. Nicoli MC, Anese M, Parpinel M (1999) Trends Food Sci Technol 10:94–100

    Article  CAS  Google Scholar 

  55. Mustafa A, Andersson R, Rosen H, Kamal-Eldin A, Aman P (2005) J Agric Food Chem 53:5985–5989

    Article  CAS  Google Scholar 

  56. Surdyk N, Rosen J, Andersson R, Aman P (2004) J Agric Food Chem 52:2047–2051

    Article  CAS  Google Scholar 

  57. Hidalgo FJ, Zamora R (2000) Grasas y Aceites 51:35–49

    Article  CAS  Google Scholar 

  58. Oliviero T, Capuano E, Cammerer B, Fogliano V (2009) J Agric Food Chem 57:147–152

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Assunta Siani and Edoardo Capuano are thanked for the VOO sampling and technical assistance. This work was carried out in the framework of COST 927-Thermally processed foods: possible health implication. Research has been partly fund by Consejeria Educación y Ciencia (CAM) under project (ANALISYC Program, S-505/AGR-0312) and Comunidad de Madrid (PhD grant Gema Arribas-Lorenzo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Morales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arribas-Lorenzo, G., Fogliano, V. & Morales, F.J. Acrylamide formation in a cookie system as influenced by the oil phenol profile and degree of oxidation. Eur Food Res Technol 229, 63–72 (2009). https://doi.org/10.1007/s00217-009-1026-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-009-1026-z

Keywords

Navigation