Effect of different extraction methods on the recovery of chlorogenic acids, caffeine and Maillard reaction products in coffee beans

Abstract

Water and ethanolic extracts were obtained from green and roasted (3 different roast degrees) Arabica and Robusta coffee beans. Three types of water extracts were prepared from the examined, finely ground material through: (a) brewing with boiling water, (b) boiling in water, and (c) boiling in water under elevated pressure. All these extracts were lyophilized. Two types of ethanolic extracts were derived from the examined material through (a) extraction of the finely ground coffee beans and (b) extraction of the solid residue that remained after boiling the coffee beans in water under elevated pressure. These ethanolic extracts were dried. Both water and ethanolic extracts were analyzed for concentration of potential antioxidants such as chlorogenic acids and caffeine (by HPLC) and Maillard reaction products (measurements of absorbance at 420 nm). Concentration of chlorogenic acids in Robusta extracts varied between 0.4 and 36.0 g × 100 g−1 dry extract weight (db.), while in Arabica extracts it ranged from 0.1 to 22.4 g × 100 g−1 db. Extracts of dark roasted Arabica contained more chlorogenic acids than those of Robusta. Concentration of caffeine, which in green and roasted coffee beans is maintained at the similar level, tended to increase in Robusta extracts with the roast degree and temperature of extraction with water, while in case of Arabica extracts there was no noticeable tendency. Caffeine concentrations varied between 0.12 and 8.41 g × 100 g−1 db. and between 0.03 and 6.53 g × 100 g−1 db. in Robusta and Arabica extracts, respectively. Ethanolic extracts were characterized by relatively higher caffeine concentrations and lower contents of brown pigments and chlorogenic acids as compared to water extracts. The richest in antioxidants were extracts of green Robusta coffee beans derived through boiling in water under elevated pressure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Taviani A, La Vecchia C (2000) Eur J Can Prev 9:241–256

    Article  Google Scholar 

  2. 2.

    Sánchez-González I, Jiménez-Escrig A, Saura-Calixto F (2005) Food Chem 90:133–139

    Article  Google Scholar 

  3. 3.

    Delgado-Andrade C, Rufián-Henares JA, Morales FJ (2005) J Agric Food Chem 53:7832–7836

    Article  CAS  Google Scholar 

  4. 4.

    Lee C (2000) Clin Chim Acta 295:141–154

    Article  CAS  Google Scholar 

  5. 5.

    Choudhury R, Srai SK, Debnam E, Rice-Evans CA (1999) Free Rabical Bio Med 27:278–286

    Article  CAS  Google Scholar 

  6. 6.

    Couteau D, McCartney AL, Gibson GR, Williamson G, Faulds CB (2001) J Applied Microbiol 90:873–881

    Article  CAS  Google Scholar 

  7. 7.

    Cämmerer B, Kroh LW (2006) Eur Food Res Technol 223:469–474

    Article  Google Scholar 

  8. 8.

    Charurin P, Ames JM, del Castillo MD (2002) J Agric Food Chem 50:3751–3756

    Article  CAS  Google Scholar 

  9. 9.

    Yanagimoto K, Ochi H, Lee K-G, Shibamoto T (2004) J Agric Food Chem 52:592–596

    Article  CAS  Google Scholar 

  10. 10.

    Parras P, Martínez-Tomé M, Jiménez AM, Murcia MA (2007) Food Chem 102:582–592

    Article  CAS  Google Scholar 

  11. 11.

    Ramalakshmi K, Rahath Kubra I, Jagan Mohan Rao L (2008) Food Res Int 41:96–103

    Article  CAS  Google Scholar 

  12. 12.

    Glei M, Kirmse A, Habermann N, Persin C, Pool-Zobel BL (2006) Nutr Cancer 56:182–192

    Article  CAS  Google Scholar 

  13. 13.

    Nissen LR, Byrne DV, Bertelsen G, Skibsted RH (2004) Meat Sci 68:485–495

    Article  CAS  Google Scholar 

  14. 14.

    Farah A, de Paulis T, Moreira DP, Trugo LC, Martin PR (2006) J Agric Food Chem 54:374–381

    Article  CAS  Google Scholar 

  15. 15.

    Farah A, de Paulis T, Trugo LC, Martin PR (2005) J Agric Food Chem 53:1505–1513

    Article  CAS  Google Scholar 

  16. 16.

    Fujioka K, Shibamoto T (2008) Food Chem 106:217–221

    Article  CAS  Google Scholar 

  17. 17.

    Fujioka K, Shibamoto T (2006) J Agric Food Chem 54:6054–6058

    Article  CAS  Google Scholar 

  18. 18.

    Charles-Bernard M, Kraehenbuehl K, Rytz A, Roberts DD (2005) J Agric Food Chem 53:4417–4425

    Article  CAS  Google Scholar 

  19. 19.

    Schwarz K, Bertelsen G, Nissen LR, Gardner PT, Heinonen MI, Hopia A, Huynh-Ba T, Lambelet P, McPhail D, Skibsted LH, Tijburg L (2001) Eur Food Res Technol 212:319–328

    Article  CAS  Google Scholar 

  20. 20.

    Lakenbrink C, Lapczynski S, Maiwald B, Engelhardt UH (2000) J Agric Food Chem 48:2848–2852

    Article  CAS  Google Scholar 

  21. 21.

    Peters A, Lee S, Egberts D (1991) Asic 14th Colloque, San Francisco, pp 97–106

  22. 22.

    Matilla P, Kumpulainen J (2002) J Agric Food Chem 50:3660–3667

    Article  Google Scholar 

  23. 23.

    Karakaya S, El SN, Taş AA (2001) Int J Food Sci Nutr 52:501–508

    Article  CAS  Google Scholar 

  24. 24.

    Bell LN, Wetzel CR, Grand AN (1996) Food Res Int 29:785–789

    Article  CAS  Google Scholar 

  25. 25.

    del Castillo MD, Ames JM, Gordon MH (2002) J Agric Food Chem 50:3698–3703

    Article  CAS  Google Scholar 

  26. 26.

    Budryn G, Nebesny E (2008) Deut Lebensm Rund 104:69–78

    CAS  Google Scholar 

  27. 27.

    Nunes FM, Coimbra MA, Duarte AC, Delgadillo I (1997) J Agric Food Chem 45:3238–3243

    Article  CAS  Google Scholar 

  28. 28.

    Pittia P, Dalla Rosa M, Lerici CR (2001) Food Sci Technol 34:168–175

    CAS  Google Scholar 

  29. 29.

    Clifford MN, Johnston KL, Knight S, Kuhnert N (2003) J Agric Food Chem 51:2900–2911

    Article  CAS  Google Scholar 

  30. 30.

    Yen W-J, Wang B-S, Chang L-W, Duh P-D (2005) J Agric Food Chem 53:2658–2663

    Article  CAS  Google Scholar 

  31. 31.

    Clarke RJ (1985) Coffee, vol. I. Chemistry. Elsevier, London, pp 190–191

    Google Scholar 

  32. 32.

    Guerrero G, Suárez M (2001) 49:2454–2458

  33. 33.

    Ky C-L, Noirot M, Hamon S (1997) J Agric Food Chem 45:786–790

    Article  CAS  Google Scholar 

  34. 34.

    Papetti A, Dagla M, Aceti C, Quaglia M, Gregotti C, Gazzani G (2006) J Agric Food Chem 54:1209–1216

    Article  CAS  Google Scholar 

  35. 35.

    Yanagimoto K, Ochi H, Lee K-G, Shibamoto T (2004) J Agric Food Chem 52:592–596

    Article  CAS  Google Scholar 

  36. 36.

    Yanagimoto K, Lee K-G, Ochi H, Shibamoto T (2002) J Agric Food Chem 50:5480–5484

    Article  CAS  Google Scholar 

  37. 37.

    Morales FJ, Babbel M-B (2002) J Agric Food Chem 50:4657–4661

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The studies were supported by grant number 2 P06 T 060 29 from the State Committee for Scientific Researches.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Grażyna Budryn.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Budryn, G., Nebesny, E., Podsędek, A. et al. Effect of different extraction methods on the recovery of chlorogenic acids, caffeine and Maillard reaction products in coffee beans. Eur Food Res Technol 228, 913–922 (2009). https://doi.org/10.1007/s00217-008-1004-x

Download citation

Keywords

  • Coffee
  • Coffee processing
  • Chlorogenic acids
  • Caffeine
  • Maillard reaction products
  • HPLC