Skip to main content
Log in

Indigestible fraction of okara from soybean: composition, physicochemical properties and in vitro fermentability by pure cultures of Lactobacillus acidophilus and Bifidobacterium bifidum

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

An Erratum to this article was published on 27 January 2009

Abstract

Major non-digestible components of soybean seeds and okara were determined by an in vitro enzymatic-physiological method, alternative to dietary fibre. Total indigestible fraction was higher in okara (41.6%) than in seeds (28.5%), and consisted of soluble and insoluble fractions, mainly composed of non-starch polysaccharides, klason lignin and resistant protein. Total protein was lower in okara (32.29%) than in seeds (46.97%), as were oil (14.72% okara–20.89% seeds) and ash contents (3.18% okara–4.60% seeds). In vitro digestibility of protein was lower for okara (84.3%), than for soybean seed (91.8%). Moreover, okara showed high swelling (10.54 ± 0.14 mL/g d.w.) and water retention capacity (8.87 ± 0.06 g/g d.w.) and was fermented in vitro to a greater extent by Bifidobacterium bifidum (29.8%), than by Lactobacillus acidophilus (8.3%). For its composition, physico-chemical properties and bifidogenic capacity in vitro, okara is a potential candidate to be a prebiotic fibre-rich ingredient of new functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

IIF:

Insoluble indigestible fraction

SIF:

Soluble indigestible fraction

TIF:

Total indigestible fraction

TDF:

Total dietary fibre

NS:

Neutral sugar

KL:

Klason lignin

RP:

Resistant protein

UA:

Uronic acid

GLC:

Gas liquid chromatography

FID:

Flame ionisation detector

SC:

Swelling capacity

WRC:

Water retention capacity

ORC:

Oil retention capacity

References

  1. Golbitz P (1995) J Nutr 125(3):s570–s572

    Google Scholar 

  2. Keinan-Boker L, Peeters PH, Mulligan AA, Navarro C, Slimani N, Mattison I, Lundin E, McTaggart A, Allen NE, Overvad K, Tjonneland A, Clavel-Chapelon F, Liuseisen J, Haftenberger M, Lagiou P, Kalapothaki V, Evangelista A, Frasca G, Bueno-de-Mesquita HB, Van der Schouw YT, Engeset D, Skeie G, Tormo MJ, Ardanaz E, Charroudiere UR, Riboli E (2002) Pub Health Nutr 5:1217–1226

    CAS  Google Scholar 

  3. http://www.mapa.es/es/estadistica/pags/superficie/superficie.htm

  4. http://www.fao.org/countryprofiles/

  5. Noguchi A (1987) Food Sci Technol Abstr 87:08–V0076

    Google Scholar 

  6. O’Toole DK (1999) J Agric Food Chem 47:363–371

    CAS  Google Scholar 

  7. Van der Riet WB, Wight AW, Cilliers JJL, Datel JM (1989) Food Chem 34:193–202

    Google Scholar 

  8. Grieshop CM, Kadzere CT, Clapper GM, Flikinger EA, Bauer LL, Frazier RL, Fahey GC (2003) J Agric Food Chem 51:7684–7691

    CAS  Google Scholar 

  9. Pfoertner HP, Fischer J (2001) Dietary fibres of lupins and other grain legumes. In: McCleary BV, Prosky L (eds) Advanced dietary fibre technology. Blackwell, Oxford, pp 361–366

    Google Scholar 

  10. Guillon F, Champ MMJ (2002) Br J Nutr 88(suppl 3):s293–s306

    CAS  Google Scholar 

  11. Prosky L (1999) J AOAC Int 82:223–226

    CAS  Google Scholar 

  12. Prosky L, Asp NG, Schweizer TF, De Vries JW, Furda I (1988) J AOAC Int 71(5):1017–1023

    CAS  Google Scholar 

  13. Mañas E, Saura-Calixto F (1993) Food Chem 47:351–355

    Google Scholar 

  14. Saura-Calixto F, García-Alonso A, Goñi I, Bravo L (2000) J Agric Food Chem 48:3342–3347

    CAS  Google Scholar 

  15. Cummings JH, MacFarlane GT (1991) J Appl Bacterol 70:443–459

    Article  CAS  Google Scholar 

  16. García-Domingo C, Rupérez P, Saura-Calixto F (1997) Z Lebensm Unters Forsch A 205:43–47

    Google Scholar 

  17. Simon GL, Gorbach SL (1986) Dig Dis Sci 31(9):147s–162s

    CAS  Google Scholar 

  18. Tannock GW (1995) Normal microflora. Chapman & Hall, London

    Google Scholar 

  19. Suskovic J, Blazenka K, Goleta J, Matosic S (2001) Food Technol Biotechnol 39(3):227–235

    CAS  Google Scholar 

  20. Gomes AMP, Malcata FX (1999) Trends Food Sci Technol 10:139–157

    CAS  Google Scholar 

  21. Van Loo J, Coussement P, De Leenheer L, Hoebregs H, Smith G (1995) Crit Rev Food Sci Nutr 35:525–552

    Article  Google Scholar 

  22. Tuohy KM, Ziemer CJ, Klinder A, Knöbel Y, Pool-Zobel BL, Gibson GR (2002) Microbial Ecol Health Dis 14:165–173

    Google Scholar 

  23. Tuohy KM, Rouzaud GCM, Brück WM, Gibson GR (2005) Curr Pharma Des 11:75–90

    CAS  Google Scholar 

  24. Dreher ML (1987) In handbook of dietary fibre. An applied approach. Marcel Dekker, New York

    Google Scholar 

  25. Rupérez P, Saura-Calixto F (2001) Eur Food Res Technol 212:349–354

    Google Scholar 

  26. Ruperéz P, Toledano G (2003) J Sci Food Agric 83:1267–1272

    Google Scholar 

  27. Loewus FA (1952) Anal Chem 24:219

    CAS  Google Scholar 

  28. Scott RW (1979) Anal Chem 51:936–941

    CAS  Google Scholar 

  29. Englyst HN, Cummings JH (1988) J AOAC 71:808–814

    CAS  Google Scholar 

  30. Robertson JA, de Monredon FD, Dysseler P, Guillon F, Amado R, Thibault J-F (2000) Lebensm-Wiss Technol 33:72–77

    CAS  Google Scholar 

  31. Fuller R (1989) J Appl Bacteriol 66:365–378

    CAS  Google Scholar 

  32. Serrano J, Goñi I, Saura-Calixto F (2005) J Agric Food Chem 53:2936–2940

    CAS  Google Scholar 

  33. Tortuero F, Fernández E, Rupérez P, Moreno M (1997) Nutr Res 17(1):41–49

    CAS  Google Scholar 

  34. Préstamo G, Rupérez P, Espinosa-Martos I, Villanueva MJ, Lasunción MA (2007) Eur Food Res Technol 225:925–928

    Google Scholar 

  35. Redondo-Cuenca A, Villanueva-Suárez MJ, Mateos-Aparicio I (2007) Food Chem. doi:10.1016/j.foodchem.2007.11.061

  36. Redondo-Cuenca A, Villanueva-Suárez MJ, Rodríguez-Sevilla MD, Mateos-Aparicio I (2006) Food Chem 101:1216–1222

    Google Scholar 

  37. Barry JL, Hoebler C, Macfarlane GT, Macfarlane S, Mathers JC, Reed KA, Mortensen PB, Nordgaard I, Rowland IR, Rumney CJ (1995) Br J Nutr 74:303–322

    CAS  Google Scholar 

  38. Guillon F, Barry JL, Thibault JF (1992) J Sci Food Agric 60:69–79

    CAS  Google Scholar 

  39. Titgemeyer EC, Bourquin LD, Fahey GC, Garleb KA (1991) Am J Clin Nutr 53:1418–1424

    CAS  Google Scholar 

  40. Livesey G, Smith T, Eggum BO, Tetens IH, Nyman M, Roberfroid M, Delzenne N, Schweizer TF, Decombaz J (1995) Br J Nutr 74:289–302

    CAS  Google Scholar 

  41. Jonnson E, Conway P (1992) Probiotics, the scientific basis. In: Fuller R (ed) Kluwer. Chapman & Hall. Norwell, USA, pp 260–316

Download references

Acknowledgments

Thanks are given to Mr. M. Takazumi from Toofu-Ya S.L. for the okara samples. This research was supported by the Spanish Ministerio de Educación y Ciencia, through CICYT Project AGL 2005-02447-ALI. One of us (I.E.-M.) acknowledges the CSIC for her postgraduate scholarship and the DANONE Institute for her research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Rupérez.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00217-009-1016-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinosa-Martos, I., Rupérez, P. Indigestible fraction of okara from soybean: composition, physicochemical properties and in vitro fermentability by pure cultures of Lactobacillus acidophilus and Bifidobacterium bifidum . Eur Food Res Technol 228, 685–693 (2009). https://doi.org/10.1007/s00217-008-0979-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-008-0979-7

Keywords

Navigation