Cytoprotective effect of fucoxanthin isolated from brown algae Sargassum siliquastrum against H2O2-induced cell damage


In this study, the cytoprotective effect of fucoxanthin, which was isolated from Sargassum siliquastrum, against oxidative stress induced DNA damage was investigated. Fucoxanthin, a kind of carotenoid, was pretreated to the medium and the protective effect was evaluated via 2′,7′-dichlorodihydrofluorescein diacetate, 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide, and comet assays. Intracellular reactive oxygen species were over produced by addition of hydrogen peroxide (H2O2), but the production was significantly reduced by the treatment with fucoxanthin. The fucoxanthin strongly enhanced cell viability against H2O2 induced oxidative damage and the inhibitory effect of cell damage was a dose-dependent manner. Furthermore, a protective effect against oxidative stress-induced cell apoptosis was also demonstrated via nuclear staining with Hoechst dye. These results clearly indicate that fucoxanthin isolated from S. siliquastrum possesses prominent antioxidant activity against H2O2-mediated cell damage and which might be a potential therapeutic agent for treating or preventing several diseases implicated with oxidative stress.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Schwarz K, Bertelsen G, Nissen LR, Gardner PT, Heinonen MI, Hopia A, Huynh-Ba T, Lambelet P, McPhail D, Skibsted LH, Tijburg L (2001) Eur Food Res Technol 212:319–328

    Article  CAS  Google Scholar 

  2. 2.

    Farag RS, El-Baroty GS, Basuny AM (2003) Int J Food Sci Technol 38:81–87

    Article  CAS  Google Scholar 

  3. 3.

    Heo SJ, Park EJ, Lee KW, Jeon YJ (2005) Bioresour Technol 96:1613–1623

    Article  CAS  Google Scholar 

  4. 4.

    Jimenez-Escrig A, Jimenez-Jimenez I, Pulido R, Saura-Calixto F (2001) J Sci Food Agric 81:530–534

    Article  CAS  Google Scholar 

  5. 5.

    Berhard K, Moss GP, Toth GY, Weedon BLC (1976) Tetrahedron Lett 17:115–118

    Article  Google Scholar 

  6. 6.

    Yan X, Chuda Y, Suzuki M, Nagata T (1999) Biosci Biotechnol Biochem 63:605–607

    Article  CAS  Google Scholar 

  7. 7.

    Hosokawa M, Kudo M, Maeda H, Kohno H, Tanaka T, Miyashita K (2004) Biochim Biophys Acta 1675:113–119

    CAS  Google Scholar 

  8. 8.

    Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2005) Biochem Biophys Res Commun 332:392–397

    CAS  Google Scholar 

  9. 9.

    Kotake-Nara E, Asai A, Nagao A (2005) Cancer Lett 220:75–84

    Article  CAS  Google Scholar 

  10. 10.

    Sugawara T, Matsubara K, Akagi R, Mori M, Hirata T (2006) J Agric Food Chem 54:9805–9810

    Article  CAS  Google Scholar 

  11. 11.

    Mosmann T (1983) J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  12. 12.

    Singh NP (2000) Mutat Res 455:111–127

    CAS  Google Scholar 

  13. 13.

    Gschwind M, Huber G (1995) J Neurochem 65:292–300

    CAS  Article  Google Scholar 

  14. 14.

    Lizard G, Fournel S, Genestier L, Dhedin N, Chaput C, Flacher M, Mutin M, Panaye G, Revillard JP (1995) Cytometry 21:275–283

    Article  CAS  Google Scholar 

  15. 15.

    Lee SE, Ju EM, Kim JH (2002) Exp Mol Med 34:100–106

    CAS  Google Scholar 

  16. 16.

    Jung WK, Rajapakse N, Kim SK (2005) Eur Food Res Technol 220:535–539

    Article  CAS  Google Scholar 

  17. 17.

    Ahn GN, Kim KN, Cha SH, Song CB, Lee J, Heo MS, Yeo IK, Lee NH, Jee YH, Kim JS, Heo MS, Jeon YJ (2007) Eur Food Res Technol 226:71–79

    Article  CAS  Google Scholar 

  18. 18.

    Satoh T, Sakai N, Enokido Y, Uchiyama Y, Hatanaka H (1996) J Biochem 120:540–546

    CAS  Google Scholar 

  19. 19.

    Halliwell B, Clement MV, Long LH (2000) FEBS Lett 486:10–13

    Article  CAS  Google Scholar 

  20. 20.

    Al-Enezi KS, Alkhalaf M, Benov LT (2006) Free Radic Biol Med 40:1144–1151

    Article  CAS  Google Scholar 

  21. 21.

    Zhang L, Yu H, Sun Y, Lin X, Chen B, Tan C, Cao G, Wang Z (2007) Eur J Pharmacol 564:18–25

    Article  CAS  Google Scholar 

  22. 22.

    Strazzullo P, Puig JG (2007) Nutr Metab Cardiovasc Dis 17:409–414

    Article  CAS  Google Scholar 

  23. 23.

    Kang HS, Chung HY, Jung HA, Son BW, Choi JS (2003) Chem Pharm Bull 51:1012–1014

    Article  CAS  Google Scholar 

  24. 24.

    Cahyana AH, Shuto Y, Kinoshita Y (1992) Biosci Biotechnol Biochem 56:1533–1535

    CAS  Article  Google Scholar 

  25. 25.

    Li K, Li XM, Ji NY, Wang BG (2007) Bioorg Med Chem 15:6627–6631

    Article  CAS  Google Scholar 

  26. 26.

    Zhang Q, Li N, Liu W, Zhao Z, Li Z, Xu Z (2004) Carbohydr Res 339:105–111

    Article  CAS  Google Scholar 

  27. 27.

    Kim SH, Choi DS, Athucorala Y, Jeon YJ, Senevirathne M, Rha CK (2007) Int J Food Sci Nutr 12:65–73

    CAS  Google Scholar 

  28. 28.

    LeBel CP, Ischiopoulos H, Bondy SC (1992) Chem Res Toxicol 5:227–231

    Article  CAS  Google Scholar 

  29. 29.

    Hu Z, Guan W, Wang W, Huang L, Xing H, Zhu Z (2007) Cell Biol Int 31:798–804

    Article  CAS  Google Scholar 

  30. 30.

    Senthilmohan ST, Zhang J, Stanley RA (2003) Nutr Res 23:1199–1210

    Article  CAS  Google Scholar 

  31. 31.

    Kerr JF, Gobe GC, Winterford CM, Harmon BV (1995) Methods Cell Biol 46:1–27

    Article  CAS  Google Scholar 

Download references


This research was supported by a grant (M-2007-03) from the Marine Bioprocess Research Center of the Marine Bio 21 Center, funded by Ministry of Marine Affairs and Fisheries, Republic of Korea.

Author information



Corresponding author

Correspondence to You-Jin Jeon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heo, S., Ko, S., Kang, S. et al. Cytoprotective effect of fucoxanthin isolated from brown algae Sargassum siliquastrum against H2O2-induced cell damage. Eur Food Res Technol 228, 145–151 (2008).

Download citation


  • Fucoxanthin
  • Sargassum siliquastrum
  • Cell damage
  • Oxidative stress
  • Reactive oxygen species