Study of a microwave digestion method for total arsenic determination in marine mussels by electrothermal atomic absorption spectrometry: application to samples from the Ria de Arousa

Abstract

Arsenic determination in mussel tissue was performed by electrothermal atomic absorption spectrometry (ETAAS) with Zeeman background correction and using iridium as a chemical modifier. Samples were digested by microwave heating using a mixture of nitric and sulphuric acids. This mixture makes possible the destruction of organoarsenic compounds, specifically arsenobetaine, prior to the graphite furnace determination. Optimum pyrolysis and atomization temperatures were 1,100 and 1,800 °C, respectively. The method was precise (with RSD% < 10), accurate (study of a certified reference material: 18.4 ± 1.4 μg As g−1 vs. a certified content: 18.0 ± 1.1 μg As g−1; recoveries between 90 and 104%) and sensitive (LOD 0.21 μg g−1 on a dry weight basis). The method was applied to the determination of arsenic in aquaculture mussels collected in four sampling campaigns from the productive Ría de Arousa (estuary sited in Galicia, NW of Spain).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Florea AM, Büsselberg D (2006) Biometals 19:419–427

    Article  CAS  Google Scholar 

  2. 2.

    Li W, Wei C, Zhang C, Van Hulle M, Cornelis R, Zhang X (2003) Food Chem Toxicol 41:1103–1110

    Article  CAS  Google Scholar 

  3. 3.

    Welz B, Melcher M (1985) Anal Chem 57:427–431

    Article  CAS  Google Scholar 

  4. 4.

    Ibáñez N, Cervera ML, Montoro R (1992) Anal Chim Acta 258:61–71

    Article  Google Scholar 

  5. 5.

    López JC, Reija C, Montero R, Cervera ML, de la Guardia M (1994) J Anal At Spectrom 9:651–656

    Article  Google Scholar 

  6. 6.

    Santos C, Alava-Moreno F, Lavilla I, Bendicho C (2000) J Anal At Spectrom 15:987–994

    Article  CAS  Google Scholar 

  7. 7.

    Bermejo-Barrera P, Moreda-Piñeiro A, Bermejo-Barrera A (2001) Talanta 57:969–984

    Article  Google Scholar 

  8. 8.

    Šlejkovec Z, Van Elteren JT, Woroniecka UD (2001) Anal Chim Acta 443:277–282

    Article  Google Scholar 

  9. 9.

    Narukawa T, Kuroiwa T, Yarita T, Chiba K (2006) Appl Organometal Chem 20: 565–572

    Article  CAS  Google Scholar 

  10. 10.

    Wasilewska M, Goessler W, Zischka M, Maichin B, Knapp G (2002) J Anal At Spectrom 17:1121–1125

    Article  CAS  Google Scholar 

  11. 11.

    Fecher P, Ruhnke G (1998) At Spectrosc 19:204–206

    CAS  Google Scholar 

  12. 12.

    Goessler W, Pavkov M (2003) Analyst 128: 796–802

    Article  CAS  Google Scholar 

  13. 13.

    Maher WA (1983) Talanta 30:534–536

    Article  CAS  Google Scholar 

  14. 14.

    Holak W, Specchio JJ (1991) At Spectrom 12:105–108

    CAS  Google Scholar 

  15. 15.

    Narukawa T, Kuroiwa T, Inagaki K, Takatsu A, Chiba K (2005) Appl Organometal Chem 19: 239–245

    Article  CAS  Google Scholar 

  16. 16.

    Gómez MM, Kövecs M, Palacios MA, Pizarro I, Cámara C (2005) Microchim Acta 150:9–14

    Article  Google Scholar 

  17. 17.

    Ochsenkühn-Petropulu M, Varsamis J, Parissakis G (1997) Anal Chim Acta 337:323–327

    Article  Google Scholar 

  18. 18.

    Ringmann S, Koch K, Marquardt W, Schuster M, Schlemmer G, Kainrath P (2002) Anal Chim Acta 452:207–215

    Article  CAS  Google Scholar 

  19. 19.

    Krushevska A, Barnes RM, Amarasiriwaradena C (1993) Analyst 118:1175–1181

    Article  CAS  Google Scholar 

  20. 20.

    Damkröger G, Grote M, Janβen E (1997) Fresenius J Anal Chem 357:817–821

    Article  Google Scholar 

  21. 21.

    Julshamn K, Thorlacius A, Lea P (2000) J AOAC Int 83:1423–1428

    CAS  Google Scholar 

  22. 22.

    Welz B, Schlemmer G (1986) J Anal At Spectrom 1:119–124

    Article  CAS  Google Scholar 

  23. 23.

    Bermejo-Barrera P, Moreda-Piñeiro J, Moreda-Piñeiro A, Bermejo-Barrera A (1998) At Spectrosc 19:100–106

    CAS  Google Scholar 

  24. 24.

    Herbello-Hermelo P, Barciela-Alonso MC, Bermejo-Barrera A, Bermejo-Barrera P (2005) J Anal At Spectrom 20:662–664

    Article  CAS  Google Scholar 

  25. 25.

    Prego R, Cobelo-García A (2003) Environ Pollut 121:425–452

    Article  CAS  Google Scholar 

  26. 26.

    Santos C, Alava-Moreno F, Lavilla I, Bendicho C (2000) J Anal At Spectrom 15:987–994

    Article  CAS  Google Scholar 

  27. 27.

    Bermejo-Barrera P, Lorenzo-Alonso MJ, Aboal-Somoza M, Bermejo-Barrera A (1994) Mikrochim Acta 117(1–2):49–64

    CAS  Google Scholar 

  28. 28.

    Miller JC, Miller JN (1993) Statistic for analytical chemistry. Ellis Horwood, New Cork

    Google Scholar 

  29. 29.

    Figueiras FG, Labarta U, Reiriz MJ (2002) Hidrobiología 484:121–131

    Article  Google Scholar 

  30. 30.

    USFDA (2001) Fish and fisheries products hazards and control guidance, 3rd edn. http://www.cfsan.fda.gov/∼comm/haccp4i.html

  31. 31.

    Prego R, Cobelo-García A, Santos-Echeandía J (2005) VERTIMAR-2005, symposium on marine accidental oil spills, Vigo. http://otvm.uvigo.es/vertimar2005/comunicaciones/1095_Prego_InstInvMarinas.doc

  32. 32.

    Beiras R, Bellas J, Fernández N, Lorenzo JI, Cobelo-García A (2003) Mar Environ Res 56:531–553

    Article  CAS  Google Scholar 

  33. 33.

    Saavedra Y, González A, Fernández P, Blanco J (2004) Sci Total Environ 318:115–124

    Article  CAS  Google Scholar 

  34. 34.

    Saavedra Y, González A, Fernández P, Blanco J (2004) Arch Environ Contam Toxicol 47:341–351

    Article  CAS  Google Scholar 

  35. 35.

    Falcó G, Llobet JM, Bocio A, Domingo JL (2006) J Agric Food Chem 54:6106–6112

    Article  Google Scholar 

  36. 36.

    Orescanin V, Lovrencic I, Mikelic L, Barisic D, Matasin Z, Lulic S, Pezelj D (2006) Nucl Instrum Methods Phys Res B 245:495–500

    Article  CAS  Google Scholar 

  37. 37.

    Kayhan FE, Balkis N, Aksu A, (2006) Ekojoli 16:1–5

    CAS  Google Scholar 

  38. 38.

    Wang Y, Liang L, Shi J, Jiang G (2005) Environ Int 31:1003–1113

    Article  Google Scholar 

  39. 39.

    Burger J, Gochfeld M (2006) Sci Total Environ 306:937–950

    Google Scholar 

  40. 40.

    Peña-Vázquez E, Villanueva-Alonso J, Bermejo-Barrera A, Bermejo-Barrera P (2006) J Environ Monit 8:641–648

    Article  Google Scholar 

  41. 41.

    Otero XL, Vidal-Torrado P, Calvo de Anta RM, Macías F (2005) Environ Pollut 136:119–134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was part of a project sponsored by the Spanish Government through the Ministry of Science and Education, ref.: REN2002-01941. E. M. Peña Vázquez acknowledges the financial support by the Galician Government (Xunta de Galicia) in the framework of the Isidro Parga Pondal program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pilar Bermejo-Barrera.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Curros-Gontad, B., Barciela-Alonso, M.C., Buján-Villar, M.D. et al. Study of a microwave digestion method for total arsenic determination in marine mussels by electrothermal atomic absorption spectrometry: application to samples from the Ria de Arousa. Eur Food Res Technol 227, 1165–1172 (2008). https://doi.org/10.1007/s00217-008-0832-z

Download citation

Keywords

  • Arsenic
  • Mussel samples
  • Microwave assisted digestion
  • Electrothermal atomic absorption spectrometry
  • Ría de Arousa