Skip to main content
Log in

An optimised micro-titer plate method for characterisation of endogenous rye phytase under industrial rye bread making conditions

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

A modified rapid method for the determination of phytase activity has been developed by measurements of molybdenum blue complex using micro-titer plate reader. This method requires only a small amount of extract, and it is possible to make more replicates at the same time and thus a better sampling and a higher capacity compared to measurements on spectrophotometer, which is traditionally used for those measurements. The extraction time was reduced by 36% compared to standard method and the extinction coefficient for molybdenum blue complex was determined instead of using P-standard solutions. To demonstrate the new method it was applied to the determination of the activity of phytase at a range of pH values and temperatures relevant to the rye bread making process. The activity of rye phytase was 320 nkatal g−1 grains (pH 5.5, 37 °C). The temperature optimum was 45–55 °C and the pH optimum 6.0. The study revealed that the rye phytase is very pH-sensitive and quite stable at different temperatures during the whole bread-making process. The enzyme activity of the endogenous rye phytase is optimal for a total degradation of phytic acid during rye bread making and thus the full bioavailability of phytate-bound minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lott JNA, Ockenden I, Raboy V, Batten GD (2002) A global estimation of phytic acid and phosphorus in crop grains, seeds, and fruits. In: Reddy NR, Sathe SK (eds) Food phytates. CRC Press, Boca Raton, pp 7–24

    Google Scholar 

  2. Weaver CM, Kannan S (2002) Phytate and mineral bioavailability. In: Reddy NR, Sathe SK (eds) Food phytates, CRC Press, Boca Raton, pp 211–223

    Google Scholar 

  3. Sandström B, Sandberg A-S (1992) J Trace Elem Electrolytes Health Dis 6:99–103

    Google Scholar 

  4. Haraldsson A-K, Rimsten L, Alminger ML, Andersson R, Andlid T, Åman P, Sandberg A-S (2004) J Sci Food Agric 84:653–662

    Article  CAS  Google Scholar 

  5. Casey A, Walsh G (2004) J Biotechnol 110:313–322

    Article  CAS  Google Scholar 

  6. Greiner R, Egli I (2003) J Agric Food Chem 51:847–850

    Article  CAS  Google Scholar 

  7. Vats P, Banerjee UC (2004) Enzym Microb Technol 35:3–14

    Article  CAS  Google Scholar 

  8. Centeno C, Viveros A, Brenes A, Canales R, Lozano A, de la Cuadra C (2001) J Agric Food Chem 49:3208–3215

    Article  CAS  Google Scholar 

  9. Pandey A, Szakacs G, Soccol CR, Rodriguez-Leon JA, Soccol VT (2001) Bioresour Technol 77:214

    Article  Google Scholar 

  10. Peers FG (1957) Biochem J 53:102–110

    Google Scholar 

  11. Sandberg A-S, Rossander-Hultén L, Türk M (1996) J Nutr 126:476–480

    CAS  Google Scholar 

  12. Wyss M, Brugger R, Kronenberger A, Rémy R, Fimbel R, Oesterhelt G, Lehmann M, van Loon APGM (1999) Appl Environ Microbiol 65:367–373

    CAS  Google Scholar 

  13. Andriotis VME, Ross JD (2003) Phytochem 64:689–699

    Article  CAS  Google Scholar 

  14. Greiner R, Konietzny U, Jany K-D (1998) J Food Biochem 22:143–161

    Article  CAS  Google Scholar 

  15. Okot-Kotber M, Yong K-J, Barorogoza K, Liavoga A (2003) J Cereal Sci 38:307–315

    Article  CAS  Google Scholar 

  16. Porres JM, Aranda P, López-Jurado M, Urbano G (2003) J Agric Food Chem 51:5144–5149

    Article  CAS  Google Scholar 

  17. Selle PH, Ravindran V, Caldwell RA, Bryden WL (2000) Nutr Res Rev 13:255–278

    Article  CAS  Google Scholar 

  18. Nielsen MM, Damstrup ML, Thomsen AD, Rasmussen SK, Hansen Å (2006) Eur Food Res Technol 225:214–222

    Google Scholar 

  19. Stauffer CE (1989) Ester hydrolases. In: Stauffer CE (ed) Enzyme assays for food scientists. AVI BOOK, New York, pp 187–201

    Google Scholar 

  20. Greiner R, Jany K-D, Alminger ML (2000) J Cereal Sci 31:127–139

    Article  CAS  Google Scholar 

  21. Skoglund E, Carlsson N-G, Sandberg A-S (1997) J Agric Food Chem 45:4668–4673

    Article  CAS  Google Scholar 

  22. Türk M, Sandberg A-S, Carlsson N-G, Andlid T (2000) J Agric Food Chem 48:100–104

    Article  Google Scholar 

  23. Camire AL, Clydesdale FM (1982) J Food Sci 47:575–578

    Article  CAS  Google Scholar 

  24. Hatzack F, Hübel F, Zhang W, Hansen PE, Rasmussen SK (2001) Biochem J 354:473–480

    Article  CAS  Google Scholar 

  25. Sandberg A-S, Ahderinne R (1986) J Food Sci 51:547–550

    Article  CAS  Google Scholar 

  26. Sandberg A-S, Carlsson N-G, Svanberg U (1989) J Food Sci 54:159–161

    Article  CAS  Google Scholar 

  27. Türk M, Carlsson N-G, Sandberg A-S (1996) J Cereal Sci 23:257–264

    Article  Google Scholar 

  28. Nakano T, Joh T, Narita K, Hayakawa T (2000) Biosci Biotechnol Biochem 64:995–1003

    Article  CAS  Google Scholar 

  29. Phillippy BQ (1989) J Agric Food Chem 37:1261–1265

    Article  CAS  Google Scholar 

  30. Eeckhout W, De Paepe M (1994) Anim Feed Sci Technol 47:19–29

    Article  CAS  Google Scholar 

  31. Engelen AJ, van der Heeft FC, Randsdorp PHG, Smit ELC (1994) J AOAC Int 77:760–764

    CAS  Google Scholar 

  32. Fretzdorff B, Weipert D (1986) Z Lebensm Unters Forsch 182:287–293

    Article  CAS  Google Scholar 

  33. Heinonen JK, Lahti RJ (1981) Anal Biochem 113:313–317

    Article  CAS  Google Scholar 

  34. Lolas GM, Markakis P (1977) J Food Sci 42:1094–1106

    Article  CAS  Google Scholar 

  35. Tipton KF (2002) Principles of enzyme assay and kinetic studies. In: Eisenthal R, Danson MJ (eds) Enzyme assays, Oxford University Press, Oxford, pp 1–48

    Google Scholar 

  36. Bergman E-L, Autio K, Sandberg A-S (2000) J Agric Food Chem 48:4647–4655

    Article  CAS  Google Scholar 

  37. Konietzny U, Greiner R, Jany K-D (1995) J Food Biochem 18:165–183

    Article  CAS  Google Scholar 

  38. Lee WJ (1990) J Am Soc Brew Chem 48:62–65

    CAS  Google Scholar 

  39. Türk M (1999) Cereal- and microbial phytases. phytate degradation, mineral binding and absorption. Dissertation, Chalmers University of Technology

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Åse Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, M.M., Damstrup, M.L. & Hansen, Å. An optimised micro-titer plate method for characterisation of endogenous rye phytase under industrial rye bread making conditions. Eur Food Res Technol 227, 1009–1015 (2008). https://doi.org/10.1007/s00217-007-0814-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0814-6

Keywords

Navigation