Skip to main content

Antioxidant properties of traditional balsamic vinegar and boiled must model systems

Abstract

Traditional balsamic vinegar (TBV) is a natural product prepared with cooked and concentrated locally grown grape must. It has been demonstrated that TBV contains phenols and shows antioxidant activity. In this study we investigated the antioxidant properties of TBV in relation to its content of phenolic compounds, polymeric tannins and Maillard reaction products (MRPs). Results show that TBV has a high antioxidant activity measured with both FRAP and ABTS assays, which is higher or equal to those obtained in some red wines. About 45% of the antioxidant activity of TBV is due to the total polyphenolic fraction. Among polyphenols, tannins contribute to about 50% of the antioxidant activity of the total polyphenolic fraction. The residual antioxidant activity of TBV is due to the melanoidins (about 45%) synthesized during the boiling of the must and the ageing of TBV and to other compounds such as low molecular weight MRPs. When we investigated the effect of heating on the browning and on the formation of antioxidant MRPs in must model systems, we observed a major formation of antioxidant MRPs for the model system containing both amino acids and sugars with respect to the model system containing only sugars. We also tested the effect of some representative phenolic compounds present in must. Only polyphenols were stable in the model solution; however, at our experimental conditions they did not influence the browning and the formation of MRPs. Independent of their bioavailability, dietary antioxidants play an important role in protecting the gastrointestinal tract from oxidative damage and also possibly against a buildup of peroxides and their assimilitation in the digestive tract.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Cocchi M, Lambertini P, Manzini D, Marchetti A, Ulrici A (2002) J Agric Food Chem 50:5255–5261

    Article  CAS  Google Scholar 

  2. Cocchi M, Durante C, Grandi M, Lambertini P, Manzini D, Marchetti A (2006) Talanta 69:1166–1175

    Article  CAS  Google Scholar 

  3. Plessi M, Bertelli D, Miglietta F (2006) J Food Comp Anal 19:49–54

    Article  CAS  Google Scholar 

  4. Verzelloni E, Tagliazucchi D, Conte A (2007) Food Chem 105:564–571

    Article  CAS  Google Scholar 

  5. Martins SIFS, Jongen WMF, van Boekel MAJS (2001) Trends Food Sci Technol 11:364–373

    Article  Google Scholar 

  6. Yoshimura Y, Iijima T, Watanabe T, Nakazawa H (1997) J Agric Food Chem 45:4106–4109

    Article  CAS  Google Scholar 

  7. Jing H, Kitts DD (2004) Arch Biochem Biophys 429:154–163

    Article  CAS  Google Scholar 

  8. Osada Y, Shibamoto T (2006) Food Chem 98:522–528

    Article  CAS  Google Scholar 

  9. Okamoto G, Hayase F, Kato H (1992) Biosci Biotechnol Biochem 566:928–931

    Article  Google Scholar 

  10. Jing H, Kitts DD (2003) Food Chem Toxicol 40:1007–1015

    Google Scholar 

  11. Manzocco L, Calligaris S, Mastrocola D, Nicoli M, Lerici CR (2001) Trends Food Sci Technol 11:340–346

    Article  Google Scholar 

  12. Morales FJ, Jiménez-Pérez S (2004) Eur Food Res Technol 218:515–520

    Article  CAS  Google Scholar 

  13. Antonelli A, Chinnici F, Masino F (2004) Food Chem 88:63–68

    Article  CAS  Google Scholar 

  14. Muratore G, Licciardello F, Restuccia C, Puglisi ML, Giudici P (2006) J Agric Food Chem 54:860–863

    Article  CAS  Google Scholar 

  15. Göğüş F, Bozkurt H, Eren S (1998) Lebensm Wiss Technol 31:196–200

    Article  Google Scholar 

  16. Bozkurt H, Göğüş F, Eren S (1999) Food Chem 64:89–93

    Article  CAS  Google Scholar 

  17. Stevanato R, Fabris S, Momo F (2004) J Agric Food Chem 52:6287–6293

    Article  CAS  Google Scholar 

  18. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Meth Enzymol 99:152–178

    Google Scholar 

  19. Oszmianski J, Ramos T, Bourzeix M (1988) Am J Enol Vitic 39:259–262

    CAS  Google Scholar 

  20. Ma YT, Cheung PCK (2007) J Agric Food Chem 55:4222–4228

    Article  CAS  Google Scholar 

  21. Hagerman AE, Butler LG (1978) J Agric Food Chem 26:809–812

    Article  CAS  Google Scholar 

  22. Morales FJ, Babbel MJ (2002) J Agric Food Chem 50:4657–4661

    Article  CAS  Google Scholar 

  23. Spanos GA, Wrolstad RE (1990) J Agric Food Chem 38:1565–1571

    Article  CAS  Google Scholar 

  24. Benzie IFF, Strain JJ (1999) Meth Enzymol 299:15–27

    CAS  Article  Google Scholar 

  25. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans CA (1999) Free Rad Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  26. Lee KW, Kim YJ, Lee HJ, Lee CY (2003) J Agric Food Chem 51:7292–7295

    Article  CAS  Google Scholar 

  27. Prior RL, Wu X, Schaich K (2005) J Agric Food Chem 53:4290–4302

    Article  CAS  Google Scholar 

  28. Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards K (2002) Analyst 127:183–198

    Article  CAS  Google Scholar 

  29. Eichner K, Karel M (1972) J Agric Food Chem 20:218–223

    Article  CAS  Google Scholar 

  30. Yilmaz Y, Toledo R (2005) Food Chem 93:273–278

    Article  CAS  Google Scholar 

  31. Borrelli RC, Fogliano V, Monti SM, Ames JM (2003) Eur Food Res Technol 215:210–215

    Article  CAS  Google Scholar 

  32. Morales FJ, Jiménez-Pérez S (2001) Food Chem 72:119–125

    Article  CAS  Google Scholar 

  33. Ajandouz EH, Puigserver A (1999) J Agric Food Chem 47:1786–1793

    Article  CAS  Google Scholar 

  34. Ajandouz EH, Tchiapke LS, Dalle Ore F, Benajiba A, Puigserver A (2001) Food Chem Toxicol 66:926–931

    CAS  Google Scholar 

  35. Lertittikul W, Benjakul S, Tanaka M (2007) Food Chem 100:669–677

    Article  CAS  Google Scholar 

  36. Kwak EJ, Lim SI (2004) Amino Acids 27:85–90

    Article  CAS  Google Scholar 

  37. Pham CB, Cheftel JC (1990) Food Chem 37:251–260

    Article  CAS  Google Scholar 

  38. Kwak EJ, Lim SI (2005) J Sci Food Agr 85:1337–1342

    Article  CAS  Google Scholar 

  39. Liu SC, Chang HM, Wu JSB (2003) Food Res Int 36:579–585

    Article  CAS  Google Scholar 

  40. Charurin P, Ames JM, Del Castillo MD (2002) J Agric Food Chem 50:3751–3756

    Article  CAS  Google Scholar 

  41. Samaras TS, Gordon MH, Ames JM (2005) J Agric Food Chem 53:4938–4945

    Article  CAS  Google Scholar 

  42. Halliwell B, Zhao K, Whiteman M (2000) Free Rad Res 33:819–830

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Paolo Giudici and “Consorzio fra produttori di Aceto Balsamico Tradizionale di Reggio Emilia” (Reggio Emilia, Italy) for the supply of traditional balsamic vinegar samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Tagliazucchi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tagliazucchi, D., Verzelloni, E. & Conte, A. Antioxidant properties of traditional balsamic vinegar and boiled must model systems. Eur Food Res Technol 227, 835 (2008). https://doi.org/10.1007/s00217-007-0794-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00217-007-0794-6

Keywords

  • Antioxidant activity
  • Maillard reaction
  • Melanoidins
  • Model solutions
  • Polyphenols
  • Tannins
  • Traditional balsamic vinegar