Enzymatic hydrolysis of steryl ferulates and steryl glycosides

  • Laura NyströmEmail author
  • Robert A. Moreau
  • Anna-Maija Lampi
  • Kevin B. Hicks
  • Vieno Piironen
Original Paper


Steryl ferulates (SF) and steryl glycosides (SG) are phytosterol conjugates found characteristically in cereals. Currently, little is known about their properties with respect to enzymatic hydrolysis. SF and SG were extracted and purified from rye and wheat bran. Their percentages of hydrolysis with different enzymes were studied using normal phase HPLC with UV detection for steryl ferulates and evaporative light scattering detection for steryl glycosides. Steryl ferulates were hydrolysed by mammalian digestive steryl esterases. It was further demonstrated that a mixture of steryl ferulates from rye and wheat was hydrolysed much more effectively than a steryl ferulate mixture from rice (commonly known as γ-oryzanol), suggesting greater bioavailability in non-rice steryl ferulates. Steryl glycosides were hydrolysed by a commercial microbial β-glucosidase preparation (cellobiase), but were not effectively hydrolysed by two other highly purified β-glucosidases. These results demonstrate for the first time the potential use of enzymes as a replacement for acid hydrolysis in analytical procedures for SG and also provide insights about the potential bioavailability of these sterol derivatives in human digestive systems.


Steryl ferulate Steryl glycoside Enzymatic hydrolysis Plant sterol γ-Oryzanol 



Laura Huikko, Tanja Nurmi and Mike Powell are thanked for technical assistance. The study was funded by the University of Helsinki and The Finnish Graduate School of Applied Bioscience (ABS). L. Nyström´s research grants from the University of Helsinki Jubilee Fund and Raisio Research Foundation are gratefully acknowledged. We would like to thank the Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, for hosting L. Nyström as a visiting scientist, during which time part of the studies herein reported were conducted.

Supplementary material

217_2007_780_MOESM1_ESM.doc (24 kb)
ESM1 (DOC 25 kb)


  1. 1.
    Nyström L, Paasonen A, Lampi A, Piironen V (2007) J Cereal Sci 45:106–115 doi: 10.1016/j.jcs.2006.08.003 CrossRefGoogle Scholar
  2. 2.
    Nyström L, Mäkinen M, Lampi A, Piironen V (2005) J Agric Food Chem 53:2503–2510 doi: 10.1021/jf048051t CrossRefGoogle Scholar
  3. 3.
    Nyström L, Achrenius T, Lampi A, Moreau RA, Piironen V (2007) Food Chem 101:947–954 doi: 10.1016/j.foodchem.2006.02.046 CrossRefGoogle Scholar
  4. 4.
    Akihisa T, Yasukawa K, Yamaura M, Ukiya M, Kimura Y, Shimizu N, Arai K (2000) J Agric Food Chem 48:2313–2319 doi: 10.1021/jf000135o CrossRefGoogle Scholar
  5. 5.
    Pegel KH (1997) S Afr J Sci 93:263–268Google Scholar
  6. 6.
    Miller A, Majauskaite L, Engel KH (2004) Eur Food Res Technol 218:349–354 doi: 10.1007/s00217-003-0851-8 CrossRefGoogle Scholar
  7. 7.
    Moreau RA, Hicks KB (2004) Lipids 39:769–776Google Scholar
  8. 8.
    Tateo M, Yoshikawa M, Takeuchi H, Fujii S, Mizobuchi H, Takeuchi H (1994) Biosci Biotechnol Biochem 58:494–497CrossRefGoogle Scholar
  9. 9.
    Weber N (1988) Lipids 23:42–47CrossRefGoogle Scholar
  10. 10.
    Kesselmeier J, Eichenberger W, Urban B (1985) Plant Cell Physiol 26:463–471Google Scholar
  11. 11.
    Condo AM Jr, Baker DC, Moreau RA, Hicks KB (2001) J Agric Food Chem 49:4961–4964 doi: 10.1021/jf010703f CrossRefGoogle Scholar
  12. 12.
    Hakala P, Lampi A, Ollilainen V, Werner U, Murkovic M, Wähälä K, Karkola S, Piironen V (2002) J Agric Food Chem 50:5300–5307 doi: 10.1021/jf025637b CrossRefGoogle Scholar
  13. 13.
    Piironen V, Toivo J, Lampi AM (2002) Cereal Chem 79:148–154 doi: 10.1094/CCHEM.2002.79.1.148 CrossRefGoogle Scholar
  14. 14.
    Bligh EG, Dyer WJ (1959) Can J Biochem Physiol 37:911–917Google Scholar
  15. 15.
    Seitz LM (1989) J Agric Food Chem 37:662–667CrossRefGoogle Scholar
  16. 16.
    Miller A, Engel KH (2006) J Agric Food Chem 54:8127–8133 doi: 10.1021/jf061688n CrossRefGoogle Scholar
  17. 17.
    Xu Z, Godber JS (1999) J Agric Food Chem 47:2724–2728 doi: 10.1021/jf981175j CrossRefGoogle Scholar
  18. 18.
    Collins FW, Fielder DA, Sarr AB, Redmond MJ, D'Attilio RZ (2002) US Patent 6495140Google Scholar
  19. 19.
    Norton RA (1994) Cereal Chem 71:111–117Google Scholar
  20. 20.
    Khatoon S, Gopala Krishna AG (2004) J Am Oil Chem Soc 81:939–943 doi: 10.1007/s11746–004-1005-5 CrossRefGoogle Scholar
  21. 21.
    Moreau RA, Singh V, Eckhoff SR, Powell MJ, Hicks KB, Norton RA (1999) Cereal Chem 76:449–451 doi: 10.1094/CCHEM.1999.76.3.449 CrossRefGoogle Scholar
  22. 22.
    Vissers MN, Zock PL, Meijer GW, Katan MB (2000) Am J Clin Nutr 72:1510–1515Google Scholar
  23. 23.
    Trautwein EA, Schulz C, Rieckhoff D, Kunath-Rau A, Erbersdobler HF, de Groot, Arjan W, Meijer GW (2002) Br J Nutr 87:227–237 doi: 10.1079/BJN2001509
  24. 24.
    Richelle M, Pridmore-Merten S, Bodenstab S, Enslen M, Offord EA (2002) J Nutr 132:2587–2592Google Scholar
  25. 25.
    Grous W, Converse A, Grethlein H, Lynd L (1985) Biotech Bioeng 27:463–470CrossRefGoogle Scholar
  26. 26.
    Hong J, Ladisch MR, Gong C, Wankat PC, Tsao GT (1981) Biotech Bioeng 23:2779–2788CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Laura Nyström
    • 1
    Email author
  • Robert A. Moreau
    • 2
  • Anna-Maija Lampi
    • 1
  • Kevin B. Hicks
    • 2
  • Vieno Piironen
    • 1
  1. 1.Department of Applied Chemistry and MicrobiologyUniversity of HelsinkiHelsinkiFinland
  2. 2.United States Department of AgricultureEastern Regional Research Center, Agricultural Research ServiceWyndmoorUSA

Personalised recommendations