Antioxidant capacity of walnut (Juglans regia L.): contribution of oil and defatted matter


Several studies have concluded that walnut exhibits greater antioxidant capacity than any other nuts. However, the contribution to antioxidant capacity of the two major fractions of walnut (defatted matter and oil) is unknown, and the aim of the present work is to elucidate it. Antioxidant capacity was evaluated in walnut oil, defatted matter, and whole walnut. The results showed that the defatted matter provided the bulk of the antioxidant capacity (estimated about 332 μmol Trolox/g dm) of this nut, a major proportion derived from insoluble tannins. The contribution of walnut oil to the overall antioxidant capacity of walnut (FRAP and ABTS assays) is less than a 5%. It was observed that oil interfered in the determination of antioxidant capacity of whole walnut, a fact that could affect the data reported in the literature. Separate determination of oil and defatted mater antioxidant capacity is recommended.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3



2,2′-Azino-bis(3-ethylbenz-thiazoline-6-sulfonic acid)


Antiradical efficiency


Cupric reducing/antioxidant capacity


2,2 Diphenyl-1-picrylhydrazyl


Ferric reducing/antioxidant power


Low-density lipoproteins


Oxygen radical absorbance capacity


Thiobarbituric acid reactive substances


Total peroxyl radical trapping antioxidant activity


  1. 1.

    Stanner S, Hughes J, Buttriss J (2004) Public Health Nutr 7:407–422

    Article  CAS  Google Scholar 

  2. 2.

    Halliwell B (1997) Nutr Rev 5:544–552

    Google Scholar 

  3. 3.

    Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt S, Prior RL (2004) J Agric Food Chem 52(12):4026–4037

    Article  CAS  Google Scholar 

  4. 4.

    Li L, Tsao R, Yang R, Liu C, Zhu H, Young JC (2006) J Agric Food Chem 54:8033–8040

    Article  CAS  Google Scholar 

  5. 5.

    Pellegrini N, Serafini M, Salvatore S, Del Rio D, Bianchi M, Brighenti F (2006) Mol Nutr Food Res 50(11):1030–1038

    Article  CAS  Google Scholar 

  6. 6.

    Fukuda T, Ito H, Yoshida T (2003) Phytochemistry 63:795–801

    Article  CAS  Google Scholar 

  7. 7.

    Anderson KJ, Teuber SS, Gobeille A, Cremin P, Waterhouse AL, Steinberg FM (2001) J Nutr 131(11):2387–2742

    Google Scholar 

  8. 8.

    Kornsteiner M, Wagner KH, Elmadfa I (2005) Food Chem 98:381–387

    Article  CAS  Google Scholar 

  9. 9.

    Reiter RJ, Manchester LC, Tan DX (2005) Nutrition 21(9):920–924

    CAS  Google Scholar 

  10. 10.

    Espín JC, Soler-Rivas C, Wichers HJ (2000) J Agric Food Chem 48:648–656

    Article  CAS  Google Scholar 

  11. 11.

    Jiménez-Escrig A, Dragsted LO, Daneshvar B, Pulido R, Saura-Calixto F (2003) J Agric Food Chem 51(18):5540–5545

    Article  CAS  Google Scholar 

  12. 12.

    Sánchez-González I, Jiménez-Escrig A, Saura-Calixto F (2001) Food Chem 90(1/ 2):133–139

    Google Scholar 

  13. 13.

    Pérez-Jiménez J, Saura-Calixto F (2005) J Agric Food Chem 53(12):5036–5040

    Article  CAS  Google Scholar 

  14. 14.

    Benzie IFF, Strain JJ (1996) Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  15. 15.

    Pulido R, Bravo L, Saura-Calixto F (2000) J Agric Food Chem 48:3396–3402

    Article  CAS  Google Scholar 

  16. 16.

    Brand-Williams W, Cuvelier ME, Berset C (1995) Lebensmittel Wissenchaft und Technologie 28:25–30

    CAS  Google Scholar 

  17. 17.

    Sánchez-Moreno C, Larrauri JA, Saura-Calixto F (1998) J Sci Food Agric 76:270–76

    Article  Google Scholar 

  18. 18.

    Re R, Pellegrini N, Preoteggente A, Pannala A, Yang M, Rice-Evans C (1999) Free Rad Biol Med 26(9/10):121–137

    Google Scholar 

  19. 19.

    Pérez-Jiménez J, Saura-Calixto F (in press) Int J Food Sci Technol

  20. 20.

    Ou B, Hampsch-Woodill M, Prior RL (2001) J Agric Food Chem 49:4619–4626

    Article  CAS  Google Scholar 

  21. 21.

    Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Methods Enzymol 299:152–178

    CAS  Article  Google Scholar 

  22. 22.

    Hartzfeld PW, Forkner R, Hunter DM, Hagerman AE (2002) J Agric Food Chem 50:1785–1790

    Article  CAS  Google Scholar 

  23. 23.

    Reed J, McDowell RE, Van Soest PJ, Horvarth PJ (1982) J Sci Food Agric 33:213–220

    Article  CAS  Google Scholar 

  24. 24.

    Wang H, Cao G, Prior RL (1996) J Agric Food Chem 44:701–705

    Article  CAS  Google Scholar 

  25. 25.

    Saura-Calixto F, Serrano J, Goñi I (2007) Food Chem 101(2):492–501

    Article  CAS  Google Scholar 

  26. 26.

    Tabernero M, Serrano J, Saura-Calixto F (2006) Int J Food Sci Technol 41(Supplement 1):28–32

    CAS  Google Scholar 

  27. 27.

    Pérez-Jiménez J, Saura-Calixto F (2006) Food Res Int 39(7):791–800

    Article  CAS  Google Scholar 

  28. 28.

    Pulido R, Hernandez-García M, Saura-Calixto F (2003) Eur J Clin Nutr 57:1275–1282

    Article  CAS  Google Scholar 

  29. 29.

    Schwarz K, Bertelsen G, Nissen LR, Gardner PT, Heinonen MI, Hopia A, Huynh-Ba T, Lambelet P, McPhail D, Skibsted LH, Tijburg L (2000) Eur Food Res Technol 21:319–328

    Google Scholar 

Download references


The present research was performed under the financial support of the Spanish Ministry of Education and Science (project AGL 2004-07579-C04-01/ALI). J. Pérez-Jiménez thanks the Consejo Superior de Investigaciones Científicas for granting her an I3P scholarship, financed by the European Social Fund. S. Arranz thanks the Ministerio de Educación y Ciencia for granting her an FPI scholarship.

Author information



Corresponding author

Correspondence to Fulgencio Saura-Calixto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arranz, S., Pérez-Jiménez, J. & Saura-Calixto, F. Antioxidant capacity of walnut (Juglans regia L.): contribution of oil and defatted matter. Eur Food Res Technol 227, 425–431 (2008).

Download citation


  • Defatted matter
  • Antioxidants
  • Walnut
  • Oil
  • Juglans regia L.