European Food Research and Technology

, Volume 227, Issue 2, pp 425–431 | Cite as

Antioxidant capacity of walnut (Juglans regia L.): contribution of oil and defatted matter

  • Sara Arranz
  • Jara Pérez-Jiménez
  • Fulgencio Saura-CalixtoEmail author
Original Paper


Several studies have concluded that walnut exhibits greater antioxidant capacity than any other nuts. However, the contribution to antioxidant capacity of the two major fractions of walnut (defatted matter and oil) is unknown, and the aim of the present work is to elucidate it. Antioxidant capacity was evaluated in walnut oil, defatted matter, and whole walnut. The results showed that the defatted matter provided the bulk of the antioxidant capacity (estimated about 332 μmol Trolox/g dm) of this nut, a major proportion derived from insoluble tannins. The contribution of walnut oil to the overall antioxidant capacity of walnut (FRAP and ABTS assays) is less than a 5%. It was observed that oil interfered in the determination of antioxidant capacity of whole walnut, a fact that could affect the data reported in the literature. Separate determination of oil and defatted mater antioxidant capacity is recommended.


Defatted matter Antioxidants Walnut Oil Juglans regia L. 



2,2′-Azino-bis(3-ethylbenz-thiazoline-6-sulfonic acid)


Antiradical efficiency


Cupric reducing/antioxidant capacity


2,2 Diphenyl-1-picrylhydrazyl


Ferric reducing/antioxidant power


Low-density lipoproteins


Oxygen radical absorbance capacity


Thiobarbituric acid reactive substances


Total peroxyl radical trapping antioxidant activity



The present research was performed under the financial support of the Spanish Ministry of Education and Science (project AGL 2004-07579-C04-01/ALI). J. Pérez-Jiménez thanks the Consejo Superior de Investigaciones Científicas for granting her an I3P scholarship, financed by the European Social Fund. S. Arranz thanks the Ministerio de Educación y Ciencia for granting her an FPI scholarship.


  1. 1.
    Stanner S, Hughes J, Buttriss J (2004) Public Health Nutr 7:407–422CrossRefGoogle Scholar
  2. 2.
    Halliwell B (1997) Nutr Rev 5:544–552Google Scholar
  3. 3.
    Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt S, Prior RL (2004) J Agric Food Chem 52(12):4026–4037CrossRefGoogle Scholar
  4. 4.
    Li L, Tsao R, Yang R, Liu C, Zhu H, Young JC (2006) J Agric Food Chem 54:8033–8040CrossRefGoogle Scholar
  5. 5.
    Pellegrini N, Serafini M, Salvatore S, Del Rio D, Bianchi M, Brighenti F (2006) Mol Nutr Food Res 50(11):1030–1038CrossRefGoogle Scholar
  6. 6.
    Fukuda T, Ito H, Yoshida T (2003) Phytochemistry 63:795–801CrossRefGoogle Scholar
  7. 7.
    Anderson KJ, Teuber SS, Gobeille A, Cremin P, Waterhouse AL, Steinberg FM (2001) J Nutr 131(11):2387–2742Google Scholar
  8. 8.
    Kornsteiner M, Wagner KH, Elmadfa I (2005) Food Chem 98:381–387CrossRefGoogle Scholar
  9. 9.
    Reiter RJ, Manchester LC, Tan DX (2005) Nutrition 21(9):920–924Google Scholar
  10. 10.
    Espín JC, Soler-Rivas C, Wichers HJ (2000) J Agric Food Chem 48:648–656CrossRefGoogle Scholar
  11. 11.
    Jiménez-Escrig A, Dragsted LO, Daneshvar B, Pulido R, Saura-Calixto F (2003) J Agric Food Chem 51(18):5540–5545CrossRefGoogle Scholar
  12. 12.
    Sánchez-González I, Jiménez-Escrig A, Saura-Calixto F (2001) Food Chem 90(1/ 2):133–139Google Scholar
  13. 13.
    Pérez-Jiménez J, Saura-Calixto F (2005) J Agric Food Chem 53(12):5036–5040CrossRefGoogle Scholar
  14. 14.
    Benzie IFF, Strain JJ (1996) Anal Biochem 239:70–76CrossRefGoogle Scholar
  15. 15.
    Pulido R, Bravo L, Saura-Calixto F (2000) J Agric Food Chem 48:3396–3402CrossRefGoogle Scholar
  16. 16.
    Brand-Williams W, Cuvelier ME, Berset C (1995) Lebensmittel Wissenchaft und Technologie 28:25–30Google Scholar
  17. 17.
    Sánchez-Moreno C, Larrauri JA, Saura-Calixto F (1998) J Sci Food Agric 76:270–76CrossRefGoogle Scholar
  18. 18.
    Re R, Pellegrini N, Preoteggente A, Pannala A, Yang M, Rice-Evans C (1999) Free Rad Biol Med 26(9/10):121–137Google Scholar
  19. 19.
    Pérez-Jiménez J, Saura-Calixto F (in press) Int J Food Sci TechnolGoogle Scholar
  20. 20.
    Ou B, Hampsch-Woodill M, Prior RL (2001) J Agric Food Chem 49:4619–4626CrossRefGoogle Scholar
  21. 21.
    Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Methods Enzymol 299:152–178CrossRefGoogle Scholar
  22. 22.
    Hartzfeld PW, Forkner R, Hunter DM, Hagerman AE (2002) J Agric Food Chem 50:1785–1790CrossRefGoogle Scholar
  23. 23.
    Reed J, McDowell RE, Van Soest PJ, Horvarth PJ (1982) J Sci Food Agric 33:213–220CrossRefGoogle Scholar
  24. 24.
    Wang H, Cao G, Prior RL (1996) J Agric Food Chem 44:701–705CrossRefGoogle Scholar
  25. 25.
    Saura-Calixto F, Serrano J, Goñi I (2007) Food Chem 101(2):492–501CrossRefGoogle Scholar
  26. 26.
    Tabernero M, Serrano J, Saura-Calixto F (2006) Int J Food Sci Technol 41(Supplement 1):28–32Google Scholar
  27. 27.
    Pérez-Jiménez J, Saura-Calixto F (2006) Food Res Int 39(7):791–800CrossRefGoogle Scholar
  28. 28.
    Pulido R, Hernandez-García M, Saura-Calixto F (2003) Eur J Clin Nutr 57:1275–1282CrossRefGoogle Scholar
  29. 29.
    Schwarz K, Bertelsen G, Nissen LR, Gardner PT, Heinonen MI, Hopia A, Huynh-Ba T, Lambelet P, McPhail D, Skibsted LH, Tijburg L (2000) Eur Food Res Technol 21:319–328Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Sara Arranz
    • 1
  • Jara Pérez-Jiménez
    • 1
  • Fulgencio Saura-Calixto
    • 1
    Email author
  1. 1.Department of Metabolism and NutritionInstituto del Frío, CSICMadridSpain

Personalised recommendations