Abstract
The morphology and composition of skin and pulp cell walls of four premium red wine grape (Vitis vinifera L.) varieties were studied to determine whether the technological differences observed in previous studies between the four different varieties during the winemaking process (especially, the anthocyanin extractability) could be partly explained by their respective cell wall compositions. Monastrell grapes showed the highest amount of cell wall material in their skins (55–57 mg cell wall/g skin), while Syrah showed the largest amount of cell wall material in the pulp (5.1 mg cell wall/g pulp). The highest percentage of galactose and cellulosic glucose in skin and pulp cell walls was also found in Monastrell grapes. The cell wall composition of Monastrell grapes, together with their morphology, suggests that the firmer pulp and skin are responsible for the difficulties this variety shows for anthocyanin extraction (extractability index varying from 37 to 60). As cell wall composition may be modulated by the action of enzymes, the activity of pectinmethylesterase, polygalacturonase, cellulase and α- and β-galactosidase was studied. No polygalacturonase and cellulase activity was found. The two galactosidases showed higher activity than pectinmethylesterase (25–290 units/g tissue versus 0.3–0.4 units/g tissue), especially in Cabernet Sauvignon grapes, although in Monastrell grapes α- and β-galactosidase activity was low, which may explain the large amount of galactose in Monastrell grapes cell wall.
This is a preview of subscription content, access via your institution.




Abbreviations
- PG:
-
Polygalacturonase
- PME:
-
Pectinmethylesterase
- PL:
-
Pectinlyase
- CWM:
-
Cell wall material
- Cel-Glu:
-
Cellulosic glucose
- UA:
-
Uronic acids
- DM:
-
Degree of pectin methylation
- DA:
-
Degree of pectin acetylation
References
Barnavon L, Doco T, Terrier N, Ageorges A, Romieu C, Pellerin P (2000) Plant Physiol Biochem 38:289–300. doi:10.1016/S0981-9428(00)00749-X
Romero-Cascales I, Ortega-Regules A, López-Roca J M, Fernández-Fernández JI, Gómez-Plaza E (2005) Am J Enol Vitic 56:212–219
Hrazdina G, Moskowitz A (1980) In Webb D (ed) Proceedings of the grape and wine centennial symposium, University of California, Davis, pp 45–253
Romero-Cascales I, Fernádez-Fernández JI, López-Roca JM, Gómez-Plaza E (2005) Eur Food Res Technol 221:163–167. doi:10.1007/s00217-005-1144-1
Nunan KJ, Sims IM, Bacic A, Robinson SP (1998) Plant Physiol 118:783–792
Huang XM, Huang HB, Wang HC (2005) Sci Hortic 104:249–263. doi:10.1016/j.scienta.2004.09.002
Batisse C, Buret M, Coulomb PJ (1996) J Agric Food Chem 44:453–457. doi:10.1021/jf950227r
Saint-Cricq de Gaulejac N, Vivas N, Glories Y (1998) Rev Franç Oenol 173:22–25
Vidal S, Williams P, O’Neill MA, Pellerin P (2001) Carbohyd Polym 45:315–323. doi:10.1016/S0144-8617(00)00285-X
Blakeney AB, Harris PJ, Henry RJ, Stone BA (1983) Carbohyd Res 113:291–299. doi:10.1016/0008-6215(83)88244-5
Scott RW (1979) Anal Chem 51:936–941. doi:10.1021/ac50043a036
Voragen AG, Schols HA, Pilnik W (1986) Food Hydrocoll 1:65–70
Bradford MM (1976) Anal Biochem 72:248–254
Singleton VL, Rossi JA (1965) Am J Enol Vitic 16:144–158
Nunan KJ, Davies C, Robinson SP, Fincher GB (2001) Planta 214:257–264. doi:10.1007/s004250100609
Hagerman AE, Austin PJ (1986) J Agric Food Chem 34:440–444. doi:10.1021/jf00069a015
Amrani Joutei K, Glories Y, Mercier M (1994) Vitis 33:133–138
Pérez-Magariño S, González-San José ML (2005) Eur Food Res Technol 220:597–606. doi:10.1007/s00217-004-1106-z
Rosli HM, Civello PM (2004) Plant Physiol Biochem 42:823–831
Doco T, Williams P, Pauly M, O’Neill MA, Pellerin P (2003) Carbohyd Polym 53:253–261. doi:10.1016/S0144-8617(03)00072-9
Femenia A, Saí ES, Simal S, Rosselló C (1999) Eur Food Res Technol 209:272–276. doi:10.1007/s002170050492
Prinzivalli C, Brambilla A, Maffi D, Lo Scalzo R, Torreggiani D (2006) Eur Food Res Technol 224:119–127. doi:10.1007/s00217-006-0298-9
Nunan KJ, Sims CA, Bacic A, Robinson SP, Fincher GB (1997) Planta 203:93–100. doi:10.1007/s004250050169
Abu-Goukh AB, Bashir HA (2003) Food Chem 83:213–218. doi:10.1016/S0308-8146(03)00067-0
Heredia A, Guillén R, Jiménez A, Fernándes-Bolaños J (1993) Z Lebensm -Unters Forsch 196:147–151. doi:10.1007/BF01185575
Soh C, Ali Z, Lazan H (2006) Phytochem 67:242–254. doi:10.1016/j.phytochem.2005.09.032
Hang YD, Woodams EE (2003) In: Book of abstract, IFT annual meeting, Dallas, p 39B
Ali ZM, Chin L, Lazan H (2004) Plant Sci 167:317–327. doi:10.1016/j.plantsci.2004.03.030
Ortega-Regules A, Romero-Cascales I, Ros-García JM, López-Roca JM, Gómez-Plaza E (2006) Anal Chim Acta 563:26–32. doi:10.1016/j.aca.2005.12.024
Acknowledgment
This work was made possible by the financial assistance from the Ministerio de Ciencia y Tecnología, Project AGL2003-01957. Author A. Ortega-Regules is the holder of a fellowship from the Government of Mexico (CONACYT).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ortega-Regules, A., Ros-García, J.M., Bautista-Ortín, A.B. et al. Differences in morphology and composition of skin and pulp cell walls from grapes (Vitis vinifera L.): technological implications. Eur Food Res Technol 227, 223–231 (2008). https://doi.org/10.1007/s00217-007-0714-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00217-007-0714-9
Keywords
- Grape berry
- Cell wall
- Mesocarp
- Exocarp
- Skin
- Pulp
- Morphology
- Winemaking technology