European Food Research and Technology

, Volume 227, Issue 1, pp 83–92 | Cite as

Influence of the degree of polymerisation in the ability of catechins to act as anthocyanin copigments

  • S. González-Manzano
  • N. Mateus
  • V. de Freitas
  • C. Santos-Buelga
Original Paper


The objective of this study was to evaluate the influence of the degree of polymerisation of flavanols in their ability to act as anthocyanin copigments. With this aim, ethyl-bridged catechin derivatives were produced by reaction between catechin and acetaldehyde. Further fractionation in Toyopearl HW-40 allowed the separation of five fractions of increasing molecular size containing mixtures of compounds in the range from monomers to hexamers as established by LC-MS. The copigmentation assays were carried out in citrate-phosphate buffer solutions in 12% ethanol at pH 3.6, using malvidin 3-O-glucoside as pigment and increasing concentrations of the different catechin fractions to obtain copigment to pigment ratios ranging 0:1–20:1. Copigmentation was assessed from the modifications in the visible spectra of the solutions; chromatic analysis in the CIELAB colour space was used to characterise the copigmentation effect. It was found that all the compounds assayed were able to interact with the anthocyanin and induced changes in the colour of the solutions. The greatest effect was induced by oligomers containing 2–3 elementary catechin units, whereas monomers were the poorest anthocyanin copigments among the compounds checked. An interesting observation was that the formation of the copigmentation complexes was not and immediate process, but it required some time to attain the equilibrium, suggesting that the phenomenon was controlled thermodynamically rather than kinetically.


Ethyl-bridged oligomers Catechin Malvidin 3-O-glucoside Copigmentation Colour Tristimulus colorimetry 


  1. 1.
    Wilderandt HL, Singleton VL (1974) Am J Enol Vitic 25:119–126Google Scholar
  2. 2.
    Fulcrand H, Doco T, Es-Safi NE, Cheynier V, Moutounet M (1996) J Chromatogr A 752:85–91CrossRefGoogle Scholar
  3. 3.
    Saucier C, Bourgeois G, Vitry C, Roux D, Glories Y (1997) J Agric Food Chem 45:1045–1049CrossRefGoogle Scholar
  4. 4.
    Timberlake CF, Bridle P (1976) Am J Enol Vitic 27:97–105Google Scholar
  5. 5.
    Bakker J, Picinelli A, Bridle P (1993) Vitis 32:111–118Google Scholar
  6. 6.
    Rivas-Gonzalo J, Bravo-Haro S, Santos-Buelga C (1995) J Agric Food Chem 43:1444–1449CrossRefGoogle Scholar
  7. 7.
    Atanasova V, Fulcrand H, Le-Guerneve C, Cheynier W, Moutounet M (2002) Tetrahedron Lett 43:6151–6153CrossRefGoogle Scholar
  8. 8.
    Noble AC (1990) Bitterness and astringency in wine. In: Rouseff R (Ed) Bitterness in foods, beverages. Elsevier, Amsterdam, pp 145–158Google Scholar
  9. 9.
    Vidal S, Francis L, Noble A, Kwiatkowski M, Cheynier V, Waters E (2004) Anal Chim Acta 513:57–65CrossRefGoogle Scholar
  10. 10.
    Saucier C, Guerra C, Pianet I., Laguerre M, Glories Y (1997) Phytochemistry 46:229–234CrossRefGoogle Scholar
  11. 11.
    Somers TC, Wescombe LG (1987) Vitis 26:27–36Google Scholar
  12. 12.
    Mazza G, Brouillard R (1990) Phytochemistry 29:1097–1102CrossRefGoogle Scholar
  13. 13.
    Asen S, Stewart RN, Norris KH (1972) Phytochemistry 11:1139–1145CrossRefGoogle Scholar
  14. 14.
    Brouillard R, Wigand MC, Dangles O, Cheminat A (1991) J Chem Soc Perkin Trans 2:1235–1241Google Scholar
  15. 15.
    Boulton R (2001) Am J Enol Vitic 52:67–87Google Scholar
  16. 16.
    Brouillard R, Dangles O (1994) Food Chem 51:365–371CrossRefGoogle Scholar
  17. 17.
    Liao H, Cai Y, Haslam E (1992) J Sci Food Agric 59:299–305CrossRefGoogle Scholar
  18. 18.
    Gomez-Miguez M, Gonzalez-Manzano S, Escribano-Bailon MT, Heredia FJ, Santos-Buelga C (2006) J Agric Food Chem 54:5422–5429CrossRefGoogle Scholar
  19. 19.
    Berke B, de Freitas VAP (2005) Food Chem 90:453–460CrossRefGoogle Scholar
  20. 20.
    Mirabel M, Saucier C, Guerra C, Glories Y (1999) Am J Enol Vitic 50:211–218Google Scholar
  21. 21.
    Malien-Aubert C, Dangles O, Amiot MJ (2002) J Agric Food Chem 50:3299–3305CrossRefGoogle Scholar
  22. 22.
    Mateus N, de Freitas V (2001) J Agric Food Chem 49:5217–5222CrossRefGoogle Scholar
  23. 23.
    Heredia FJ, Álvarez C, González-Miret ML, Ramírez, A (2004) CromaLab®, Registro General de la Propiedad Intelectual SE-1052–04, Sevilla, SpainGoogle Scholar
  24. 24.
    CIE 15:2004 (2004) Technical report colorimetry, 3rd edn. CIE Central Bureau, ISBN 3 901 906 33 9Google Scholar
  25. 25.
    Es-Safi NE, Fulcrand H, Cheynier V, Moutounet M (1999) J Agric Food Chem 47:2088–2095CrossRefGoogle Scholar
  26. 26.
    Gonzalez-Manzano S, Santos-Buelga C, Perez-Alonso JJ, Rivas-Gonzalo JC, Escribano-Bailon MT (2006) J Agric Food Chem 54:4326–4332CrossRefGoogle Scholar
  27. 27.
    Cheynier V, Doco T, Fulcrand H, Guyot S, Le Roux E, Souquet JM, Rigaud J, Moutounet M (1997) Analusis 25:M32–M37Google Scholar
  28. 28.
    Escribano-Bailon T, Alvarez-Garcia M, Rivas-Gonzalo JC, Heredia FJ, Santos-Buelga C (2001) J Agric Food Chem 49:1213–1217CrossRefGoogle Scholar
  29. 29.
    Duenas M, Salas E, Cheynier V, Dangles O, Fulcrand H (2006) J Agric Food Chem 54:189–196CrossRefGoogle Scholar
  30. 30.
    Vivar-Quintana AM, Santos-Buelga C, Rivas-Gonzalo JC (2002) Analy Chim Acta 458:147–155CrossRefGoogle Scholar
  31. 31.
    Martínez JA, Melgosa M, Pérez MM, Hita E, Negueruela AI (2001) Food Sci Technol Int 7:439–444CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • S. González-Manzano
    • 1
  • N. Mateus
    • 2
  • V. de Freitas
    • 2
  • C. Santos-Buelga
    • 1
  1. 1.Grupo de Investigación en Polifenoles, Facultad de FarmaciaUniversidad de Salamanca, Unidad de Nutrición y BromatologíaSalamancaSpain
  2. 2.Centro de Investigação em Química, Departamento de Química, Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations