Skip to main content

Effects of different Lactobacillus and Enterococcus strains and chemical acidification regarding degradation of gluten proteins during sourdough fermentation


Dough quality and baking performance of wheat dough are significantly affected by the qualitative and quantitative composition of the gluten. Therefore, the degradation was studied of specific fractions of gluten proteins in sourdough as affected by starter cultures. Doughs were fermented for 0, 5, and 24 h at 30 °C after addition of Lactobacillus sakei, L. plantarum, L. sanfranciscensis or Enterococcus faecalis. Chemically acidified doughs were used as controls. All doughs were analyzed quantitatively for their content of albumins, globulins, gliadins, glutenins, and glutenin macropolymer by means of a combined extraction/HPLC procedure. Protein degradation during sourdough fermentation was primarily due to acidic proteases present in flour. While L. sakei, L. plantarum and L. sanfranciscensis were mostly non-proteolytic, E. faecalis clearly contributed to gluten proteolysis. Single gluten protein types were clearly different in their resistance to proteolytic activities of the dough system and E. faecalis, and, in contrast to total glutenins, the amounts of gluten macropolymer were significantly reduced already after 5 h of incubation. When longer fermentation times were applied, gluten was substantially degraded. The strongest decrease was found for the glutenin fraction leading to an increase of alcohol soluble oligomeric proteins in the gliadin fraction. The extent of the decrease of monomeric gliadins was strongest for the γ-type followed by the α- and the ω-types. This indicates that dough properties residing in specific types of gluten fractions can be influenced by the duration of fermentation and the application of proteolytic strains.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7









Glutenin macropolymer




High-performance liquid chromatography






  1. Lavermicococca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobbetti M (2000) Appl Environ Microbiol 66:4084–4090

    Article  Google Scholar 

  2. Gänzle MG, Vogel RF (2002) Int J Food Microbiol 80:31–45

    Article  Google Scholar 

  3. Armero E, Collar C (1998) J Cereal Sci 28:165–174

    Article  CAS  Google Scholar 

  4. Czerny M, Schieberle P (2002) J Agric Food Chem 50:6835–6840

    Article  CAS  Google Scholar 

  5. Thiele C, Gänzle MG, Vogel RF (2002) Cereal Chem 79:45–51

    Article  CAS  Google Scholar 

  6. Liljeberg HGM, Björck IME (1996) Am J Clin Nutr 64:886–893

    CAS  Google Scholar 

  7. Östman EM, Nilson M, Liljeberg-Elmstahl HGM, Molin G, Björck IME (2002) J Cereal Sci 36:339–346

    Article  Google Scholar 

  8. Loponen J, Mikola M, Katina K, Sontag-Strohm T, Salovaara H (2004) Cereal Chem 81:87–93

    Article  CAS  Google Scholar 

  9. Wieser H, MacRitchie F, Bushuk W (2006) In: Wrigley C, Bekes F, Bushuk W (eds) AACC International, St. Paul, USA, pp 213–240

  10. Thiele C, Grassl S, Gänzle M (2004) J Agric Food Chem 52:1307–1314

    Article  CAS  Google Scholar 

  11. Weegels PL, Hamer RJ, Schofield JD (1996) J Cereal Sci 23:1–8

    Article  CAS  Google Scholar 

  12. Thiele C, Gänzle MG, Vogel RF (2003) J Agric Food Chem 51:2745–2752

    Article  CAS  Google Scholar 

  13. Clark CI, Schober TJ, Dockery P, O´Sullivan P, Arendt EK (2004) Cereal Chem 81:409–417

    Article  Google Scholar 

  14. Bleukx W, Brijs K, Torrekens S, van Leuven F, Delcour JA (1998) Biochim Biophys Acta 1387:317–324

    CAS  Google Scholar 

  15. Gobbetti M, Smacchi E, Corsetti A (1996) Appl Environ Microbiol 62:3220–3226

    CAS  Google Scholar 

  16. di Cagno R, de Angelis M, Lavermicocca P, de Vincenzi M, Giovannini C, Faccia M, Gobbetti M (2002) Appl Environ Microbiol 68:623–633

    Article  CAS  Google Scholar 

  17. Pepe O, Blaiotta G, Anastasio M, Moschetti G, Ercolini D, Villani F (2004) Syst Appl Microbiol 27:443–453

    Article  CAS  Google Scholar 

  18. Vermeulen N, Pavlovic M, Ehrmann MA, Gänzle MG, Vogel RF (2005) Appl Environ Microbiol 71:6260–6266

    Article  CAS  Google Scholar 

  19. Wieser H, Antes S, Seilmeier W (1998) Cereal Chem 75:644–650

    Article  CAS  Google Scholar 

  20. Wieser H, Seilmeier W Kieffer R, Altpeter F (2005) Cereal Chem 82:594–600

    Article  CAS  Google Scholar 

  21. Huebner FR, Bietz JA (1993) Cereal Chem 70:506–511

    CAS  Google Scholar 

  22. Wieser H, Seilmeier W, Belitz H-D (1991) Getreide Mehl Brot 45:35–38

    CAS  Google Scholar 

  23. Southan M, MacRitchie F (1999) Cereal Chem 76:827–836

    Article  CAS  Google Scholar 

  24. Grosch W, Wieser H (1999) J Cereal Sci 29:1–16

    Article  CAS  Google Scholar 

  25. Timmermann F, Belitz H-D (1993) Z Lebensm Unters Forsch 196:5–11

    Article  CAS  Google Scholar 

  26. Wehrle K, Crowe N, van Boeijen I, Arendt EK (2000). Eur Food Res Technol 209:428–433

    Article  Google Scholar 

  27. Rollan G, De Angelis M, Gobbetti M, de Valdez GF (2005) J Appl Microbiol 99:1495–1502

    Article  CAS  Google Scholar 

Download references


This research project was supported by the FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn), the AiF and the Ministry of Economics and Technology in project-no.: AiF-FV 14492N. The authors thank Mrs. A. Axthelm for excellent technical assistance.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rudi F. Vogel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wieser, H., Vermeulen, N., Gaertner, F. et al. Effects of different Lactobacillus and Enterococcus strains and chemical acidification regarding degradation of gluten proteins during sourdough fermentation. Eur Food Res Technol 226, 1495–1502 (2008).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Sourdough
  • Lactobacilli
  • Gluten proteins