Skip to main content

Advertisement

Log in

Sourdough fermented by Lactobacillus plantarum FST 1.7 improves the quality and shelf life of gluten-free bread

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Lactobacillusplantarum FST 1.7 has been recently shown to produce antifungal compounds, which improve the shelf life of wheat bread. In the present study, this strain was investigated for its ability to improve the quality and shelf life of gluten-free bread. Effects of incorporation of sourdough fermented by strain FST 1.7 into a gluten-free bread mixture were compared to those obtained with sourdough fermented by the non-antifungal strain Lactobacillus sanfranciscensis TMW 1.52 as well as to those obtained with chemically or non-acidified batters. Fundamental rheological tests revealed that the addition of sourdough to the gluten-free mix led to an increase in firmness and increase in elasticity overtime (P < 0.05). Bread characteristics such as pH, total titratable acidity, and crumb hardness (5-day storage) were evaluated. Results showed that the biologically acidified gluten-free breads were softer after 5 days than the chemically acidified gluten-free breads (P < 0.001). Antifungal challenge tests employing conidial suspensions of Fusariumculmorum were carried out using the sourdough, non-acidified batter and bread. The rate of mould growth for the fungal species used was retarded by L. plantarum FST 1.7 when compared to the controls. In conclusion, the results of this study indicate that L. plantarum FST 1.7 can be used to produce gluten-free bread with increased quality and shelf life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arbeitsgemeinschaft Getreideforschung e.V. (AGF) (1994) Standard-Methoden für Getreide, Mehl und Brot. 7. überarbeitete und erweiterte Auflage, 7th edn. Verlag Moritz Schäfer: Detmold, Germany

  2. Arendt EK, O’ Brien CM, Schober TJ, Gallagher E, Gormley TR (2002) Development of gluten-free cereal products. Farm Food, pp 21–27

  3. Barber B, Ortolá C, Barber S, Fernández F (1992) Storage of packaged white bread III. Effects of sourdough and addition of acids on bread characteristics. Z Lebensm Unters Forsch 194:442–449

    Article  CAS  Google Scholar 

  4. Bleukx W, Brijs K, Torrekens S, Van Leuven F, Delcour JA (1998) Specifity of a wheat gluten aspartic proteinase. Biochem Biophys Acta 1387:317–324

    CAS  Google Scholar 

  5. Blom H, Mortvedt C (1999) Anti-microbial substances produced by food-associated micro-organisms. Biochem Soc Trans 19:694–698

    Google Scholar 

  6. Brijs K, Bleukx W, Delcour JA (1999) Proteolytic activities in dormant rye (Secale cereale L.) grain. J Agric Food Chem. 41:3572–3578

    Article  CAS  Google Scholar 

  7. Clarke CI, Schober TJ, Arendt EK (2002) Effect of single strain and traditional mixed strain starter cultures on rheological properties of wheat dough and on bread quality. Cereal Chem 79:640–647

    Article  CAS  Google Scholar 

  8. Clarke CI, Schober TJ, Dockery P, O’Sullivan K, Arendt EK (2004) Wheat sourdough fermentation: Effects of time and acidification on fundamental rheological properties. Cereal Chem 81:409–417

    Article  CAS  Google Scholar 

  9. Corsetti A, Gobbetti M, De Marco B, Balestrieri F, Paoletti F, Russi L, Rossi J (2000) Combined effects of sourdough lactic acid bacteria and additives on bread firmness and staling. J Agri Food Chem 48:3044–3051

    Article  CAS  Google Scholar 

  10. Corsetti A, Gobbetti M, Balestrieri F, Paoletti F, Russi L, Rossi J (1998) Sourdough lactic acid bacteria effects on bread firmness and staling. J Food Sci 63:347–351

    Article  CAS  Google Scholar 

  11. Crowley P, Schober TJ, Clarke CI, Arendt EK (2002) The effect of storage time on textural and crumb grain characteristics of sourdough wheat bread. Eur Food Res Technol 214:489–496

    Article  CAS  Google Scholar 

  12. D’Appolonia LB, Morad MM (1981) Bread Staling. Cereal Chem 58:186–190

    CAS  Google Scholar 

  13. Dal Bello F, Clarke CI, Ryan LAM, Ulmer H, Ström K, Sjögren J, van Sinderen D, Schnürer J, Arendt EK. (2006) Improvement of the quality and shelf life of wheat bread by using the antifungal strain Lactobacillus plantarum FST 1.7. J Cereal Sci (in press)

  14. Denil E, Ercan R (2001) Effect of added pentosans isolated from wheat and rye grain on some properties of bread. Eur Food Res Technol 212:374–376

    Article  Google Scholar 

  15. EriksenG.S, Alexander J (1998) Fusarium toxins in cereals—a risk assessment. Teama Nord 502. Nordic Council of Ministers, Copenhagen

  16. Farkas J (2001) Physical methods for food preservation. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food microbiology: fundamentals and frontiers. ASM press, Washington pp 567–592

    Google Scholar 

  17. Farrell JR, Kelly PC (2002) Celiac Sprue. N Engl J Med 346(3):180–188

    Article  CAS  Google Scholar 

  18. Fasano A (2005) Clinical presentation of celiac disease in the pediatric population. Gastroenterology 128:68–73

    Article  Google Scholar 

  19. Fasano A., Catassi C (2001) Current approaches to diagnosis and treatment of celiac disease: an evolving spectrum. Gastro 120:636–651

    Article  CAS  Google Scholar 

  20. Filtenborg O, Frisvad JC, Thrane U (1996) Moulds in food spoilage. Int J Food Microbiol 33:85–102

    Article  CAS  Google Scholar 

  21. Herz KO (1965) Staling of bread—a review. Food Technol 19:1828–1841

    Google Scholar 

  22. Kawamura Y, Yonezawa D (1982) Wheat flour proteases and their action on gluten proteins in dilute acetic acid. Agri Biol Chem 46:767–773

    CAS  Google Scholar 

  23. Larsson M, Sandberg AS (1991) Phytate reduction in bread containing oat flour, oat bran or rye bran. J of Cereal Sci. 14(2):141–149

    Article  CAS  Google Scholar 

  24. Lavermicocca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobetti M (2000) Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl Environ Microbiol 66: 4084–4090

    Article  CAS  Google Scholar 

  25. Lavermicocca P, Valerio F, Visconti A (2003) Antifungal activity of phenyllactic acid against moulds isolated from bakery products. Appl Environ Microbiol 69: 634–640

    Article  CAS  Google Scholar 

  26. Liljeberg H. Björck I (1994) Bioavailability of starch in bread products. Postprandial glucose and insulin responses in healthy subjects and in vitro resistant starch content. Eur J Clin Nutr 48:151–163

    Google Scholar 

  27. Liljeberg HGM, Lönner CH, Björck IME (1995) Sourdough fermentation of addition of organic acids or corresponding salts to bread improves nutritional properties of starch in healthy humans. J Nutr 125:1503–1511

    CAS  Google Scholar 

  28. Maher Galal A, Varriano-Marston E, Johnson JA (1978) Rheological dough properties as affected by organic acids and salt. Cereal Chem 55:683–691

    Google Scholar 

  29. Mead R, Curnow RN (1983) Statistical methods in agriculture and experimental biology. Chapman & Hall, London

  30. Messens W, De Vuyst L (2002) Inhibitory substances produced by Lactobacilli isolated from sourdoughs–a review. Int J Food Microbiol 72:31–43

    Article  CAS  Google Scholar 

  31. Moore MM, Schober TJ, Dockery P, Arendt EK (2004) Textural comparison of gluten-free and wheat based doughs, batters and breads. Cereal Chem 81:567–575

    Article  CAS  Google Scholar 

  32. Murray JA (1999) The widening spectrum of celiac disease. Am J Clin Nutr 69:354–365

    CAS  Google Scholar 

  33. Nes IF, Johnsborg O (2004) Exploration of antimicrobial potential in LAB by genomics. Curr Opinion Biotechnol 15:100–104

    Article  CAS  Google Scholar 

  34. Nirenberg H (1976) Untersuchungen über die morphologische Differenzierung in der Fusarium- Sektion Liseola. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft. Berlin-Dahlem H 169:1–117

    Google Scholar 

  35. Osbourne TB (1907) The proteins of the wheat kernel. Carnegie Institute of Washington publication 84. Judd and Detweiler, Washington, DC

  36. Salovaara H, Göransson M (1983) Nedbrytning av fytinsyra vid franställning av surt och osyrat råggbröd. Näringsforskning 27:97–101

    CAS  Google Scholar 

  37. Salovaara H, Spicher G (1987) Anwendung von Weizensauerteigen zur Verbesserung der Qualität des Weizenbrotes. Getreide Mehl Brot 41:116–118

    Google Scholar 

  38. Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (2000) Introduction to food and airborne fungi, 6th edn. Centraalbureau voor schimmelcultures. Utrecht

  39. Schober TJ, Dockery P, Arendt EK (2003) Model studies for wheat sourdough systems using gluten, lactate buffer and sodium chloride. Eur Food Res Technol 217:235–243

    Article  CAS  Google Scholar 

  40. Ström K, Sjörgren J, Broberg A, Schnurer J (2002) Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-14-OH-L-Pro) and phenyllactic acid. Appl Environ Microbiol 68:4322–4327

    Article  CAS  Google Scholar 

  41. Ström K, Schnurer J, Melin P (2005) Co-cultivation of antifungal Lactobacillus plantarum MiLAB 393 and Aspergillus nidulans, evaluation of effects on fungal growth and protein expression. FEMS Microbiol Lett 246:119–124

    Article  CAS  Google Scholar 

  42. Thiele C, Gänzle MG, Vogel RF (2002) Contribution of sourdough lactobacilli, yeast and cereal enzymes to the generation of amino acids in dough relevant for bread flavour. Cereal Chem 79:45–51

    Article  CAS  Google Scholar 

  43. Tomotake H, Shimaoka I, Kayashita J, Nakajoh M, Kato N (2002) Physicochemical and functional properties of buckwheat protein product. J Agric Food Chem 50:2125–2129

    Article  CAS  Google Scholar 

  44. Wehrle K, Grau H, Arendt EK (1997) Effects of lactic acid, and table salt on fundamental rheological properties of wheat dough. Cereal Chem 74:739–744

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the European Commission in the Communities 6th Framework Programme, Project HEALTHGRAIN (FP6-514008). This publication reflects only authors’ views and the Community is not liable for any use that may be made of the information contained in this publication. The authors would like to thank Helge Ulmer, Birke Juga, Tilman Schober and Tom Hannon for their contribution to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Arendt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, M.M., Bello, F.D. & Arendt, E.K. Sourdough fermented by Lactobacillus plantarum FST 1.7 improves the quality and shelf life of gluten-free bread. Eur Food Res Technol 226, 1309–1316 (2008). https://doi.org/10.1007/s00217-007-0659-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0659-z

Keywords