Skip to main content
Log in

Effect of γ-irradiaton on the volatile compounds of licorice (Glycyrrhiza uralensis Fischer)

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The volatile compounds of non-irradiated and 1, 3, 5, 10 and 20 kGy γ-irradiated roots of licorice (Glycyrrhiza uralensis Fischer) were isolated by simultaneous distillation–extraction (SDE) technique and analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 61 volatile compounds belonging to the chemical classes of acid (2), alcohol (16), aldehyde (8), ester (6), furan (2), hydrocarbon (14), ketone (10) and N-containing compounds (3) were identified in non-irradiated licorice. The prime volatile compound of licorice was 2-ethoxy-1-propanol, which makes up to 22.82% of the total composition. Over a dose of 1 kGy, another compound, benzaldehyde appeared, whereas other compounds, 3,5-dimethyl octane and phenethyl alcohol, disappeared at the dose of 20 kGy. Though the content of several volatile compounds increased after γ-irradiation, the content of major volatile compounds such as 4-terpineol, myrtenal, tetramethylpyrazine, hexanoic acid, azulene and p-cymene decreased. In comparison to non-irradiated licorice, 10 kGy dose of irradiation induced the maximum level of total yield of volatile compounds by 12%, but slightly decreased at 20 kGy. Therefore, the application of γ-irradiation is feasible without major qualitative and quantitative loss of volatile compounds when exposed at 10 kGy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zhu Y-P (1998) Chinese materia medica; chemistry, pharmacology and applications. Hardwood Academic Publishers, Switzerland. ISBN 90-5702-285-0

  2. Ghazanfar SA (1994) Handbook of Arabian medicinal plants. CRC Press, Boca Raton, pp 110–111

  3. Leung AY, Foster S (1996) Encyclopedia of common natural ingredients used in food, drugs, and cosmetics 2nd edn. Wiley, New York. ISBN: 0-471-47128-3

  4. Snow J (1996) Glycorrhiza glabra monograph. Protocol J Bot Med 1–2:9–14

    Google Scholar 

  5. Hikino H (1985) Recent research on oriental medicinal plants. In: Wagner H, Hikino H, Farnsworth NR (eds) Economic and medicinal plant research, vol 1, Academic, London, pp 53–85

  6. WHO (World Health Organization) (1999) Radix Glycyrrhizae. WHO Monographs on Selected Medicinal Plants, Geneva, vol 1, pp 183–194

  7. Tang W, Eisenbrand G (1992) Chinese drugs of plant origin. Springer, Heidelberg. ISBN 3–540–19309-X

  8. Chung WT, Lee SH, Cha MS, Sung NS, Hwang B, Lee HY (2001) Korean J Med Crop Sci 9:45–54

    Google Scholar 

  9. Carmines EL, Lemus R, Gaworski CL (2005) Food Chem Toxicol 43:1303–1322

    Article  CAS  Google Scholar 

  10. Esra I, Senol I (2000) Food Chem 70:333–336

    Article  Google Scholar 

  11. Cook MK (1973) Food Eng 45:145–146

    Google Scholar 

  12. Chandler RF (1985) Can Pharmaceutical J 118:421–424

    Google Scholar 

  13. Migdal W, Owczarczyk B, Kedzia B, Holderna-Kedzia E, Segiet-Kujawa E (1998) Radiat Phys Chem 52:91–94

    Article  CAS  Google Scholar 

  14. Kim M-J, Yook H-S, Byun M-W (2000) Radiat Phys Chem 57:55–58

    Article  CAS  Google Scholar 

  15. Fang X, Wu J (1998) Radiat Phys Chem 52:53–58

    Article  CAS  Google Scholar 

  16. Koseki PM, Villavicencio ALCH, Brito MS, Nahme LC, Sebastião KI, Rela PR (2002) Radiat Phys Chem 63:681–684

    Article  CAS  Google Scholar 

  17. Katušin-Raźem B, Raźem D, Dvornik I, Matić S (1983) Radiat Phys Chem 22:707–713

    Article  Google Scholar 

  18. Rabelo SR, Satomi LC, de Pinto TJA (2005) Radiat Phys Chem 73:239–242

    Article  Google Scholar 

  19. Andrews LS, Cadwallader KR, Grodner RM, Chung HY (1995) J Food Sci 60:829–832

    Article  CAS  Google Scholar 

  20. Anon (1992) Irradiation of spices, herbs and other vegetable seasonings. International Atomic Energy Agency (IAEA-TEC-DOC-639), Vienna, pp 1–52

  21. Chatterjee S, Variyar PS, Gholap AS, Pudwal-Desai SR, Bongirwar DR (2000) Food Res Int 33:103–106

    Article  CAS  Google Scholar 

  22. Tjaberg TB, Underdal B Lunde G (1972) J Appl Bact 35:473–478

    CAS  Google Scholar 

  23. Venskutonis R, Poll L, Larsen M (1996) Flavour Fragr J 11:117–121

    Article  CAS  Google Scholar 

  24. Kameoka H, Nakai K (1987) Nippon Nogeikagaku Kaishi [J Ag Chem Soc Japan] 61:1119–1121

    CAS  Google Scholar 

  25. Miyazawa M, Kameoka H (1990) Flavour Fragr J 5:157–160

    Article  CAS  Google Scholar 

  26. Hatsuko S, Iseda J, Kusama M, Ishizu Y (1992) Nippon Shokuhin Kogyo Gakkaishi 39:257–263

    Google Scholar 

  27. Al-Bachir M, Lahham G (2003) J Sci Food Agric 83:70–75

    Article  CAS  Google Scholar 

  28. Nikerson GB, Likens ST (1966) J Chromatography 21:1–5

    Article  Google Scholar 

  29. Schultz TH, Flath RA, Mon TR, Enggling SB, Teranishi R (1977) J Agric Food Chem 25:446–449

    Article  CAS  Google Scholar 

  30. Robert PA (1995) Identification of essential oil compounds by gas chromatography/Mass spectrometry. Allured Publishing Corporation, USA

    Google Scholar 

  31. Stehagen E, Abbrahansom S, Mclafferty FW (1974) The Wiley/NBS registry of mass spectral data. Wiley, NY

    Google Scholar 

  32. Frattini C, Bicchi C, Bareltini C, Mario Nano G (1977) J Agric Food Chem 25:1238–1241

    Article  CAS  Google Scholar 

  33. Diehl JF (1995) Safety of irradiated food, 2nd edn. Marcel Dekker inc., New York. ISBN: 0–8247–9344–7

  34. Gyawali R, Seo H-Y, Lee H-J, Song H-P, Kim D-H, Byun M-W, Kim K-S (2006) Radiat Phys Chem 75:322–328

    Article  CAS  Google Scholar 

  35. Jo C, Ahn DU (2000) J Food Sci 65:612–616

    Article  CAS  Google Scholar 

  36. Kim JH, Ahn HJ, Yook HS, Kim KS, Rhee MS, Ryu GH, Byun MW (2004) Radiat Phys Chem 69:179–187

    Article  CAS  Google Scholar 

  37. Jan M, Farkas J, Langerek DI, Wolters TG, Kamp HJVD, Muuse BG (1988) Acta Alimentaria 17:13–31

    Google Scholar 

  38. Wu J-J, Yang J-S (1994) J Agric Food Chem 42:2574–2577

    Article  CAS  Google Scholar 

  39. Al-Bachir M, Al-Adawi MA, Al-Kaidm A (2004) Radiat Phys Chem 69:333–338

    Article  CAS  Google Scholar 

  40. Farkas J (1988) Irradiation of dry food ingredients. CRC Press, Florida, pp 1–9, 25–36

  41. Variyar PS, Bandyopadhyay C, Thomus P (1998) Food Res Int 31:105–109

    Article  CAS  Google Scholar 

  42. Woods RJ, Pikaev AK (1994) Applied radiation chemistry: radiation processing. John Wiley and Sons Inc. New York

  43. Olli S, Honkanen E, Kallio H, Latva-Kala K, Sjöberg A-M (1990) Euro Food Res Technol 191:181–183

    Google Scholar 

  44. Duvall JJ, Jensen HB (1968) J Phys Chem 13:4528–4534

    Article  Google Scholar 

  45. György I (1981) In: Földiák G (ed) Radiation chemistry of hydrocarbons, Chap 2. Elsevier, New York. ISBN: 0444997466

  46. Farag Serg E-D, Aziz NH, Ali Attia E-S (1995) Euro Food Res Technol 201:283–288

    Google Scholar 

Download references

Acknowledgement

This research was performed for the Nuclear R&D Programs funded by the Ministry of Science & Technology (MOST) of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyong-Su Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyawali, R., Seo, HY., Shim, SL. et al. Effect of γ-irradiaton on the volatile compounds of licorice (Glycyrrhiza uralensis Fischer). Eur Food Res Technol 226, 577–582 (2008). https://doi.org/10.1007/s00217-007-0591-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0591-2

Keywords

Navigation