Skip to main content
Log in

Protective effects of fermented onion juice containing higher amount of querectin aglycone against oxidative stress by 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH) treatment in Sprague–Dawley rats

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

It has been reported on beneficial effects of onion extracts containing a large amount of quercetin glucosides for several decades. This study was performed to investigate antioxidative and hepatoprotective effects of fermented onion (Allium cepa L.) extracts containing higher amount of quercetin aglycone (FOQ) against oxidative stress by 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH) treatment in rats. RP-HPLC analysis elucidated that the fermented onions contain larger amount of quercetin aglycone than that of fresh onions, and the content of quercetin aglycone in 1.0 kg of fresh and fermented onion pickles was 261.34 ± 19.47 and 360.25 ± 27.32 mg, respectively. In vitro free radical scavenging assay showed potently radical-quenching ability of FOQ against reactive oxygen species (ROS) such as hydroxyl, superoxide, and carbon-centered radical using electron spin resonance (ESR) spectroscopy. Biological parameters in plasma and liver tissue were evaluated with 36 healthy Sprague–Dawley rats in the experimental groups (n = 6); control (basal diet), AAPH treated, quercetin aglycone treated, ascorbate-AAPH treated, quercetin aglycone-AAPH treated and FOQ-AAPH treated group. The results revealed that quercetin aglycone or FOQ intakes could increase the level of glutathione (GSH), enzymatic activity of glutathione reductase (GSSG-R), and catalase (CAT), but could decrease the level of glutamate oxaloacetic transaminase (GOT), glutamate pyruvate transaminase (GPT), thiobarbituric acid reactive substance (TBARS) production with the abnormal levels caused by AAPH induced oxidative stress. Moreover, histological study for central vein (CV) area of hepatic lobule was illustrated that cytoplasmic phase near the CV in the qurecetin and FOQ pretreated before AAPH injection could be maintained with normal morphology like that of the control. The present study illustrated that the fermented onion extracts containing larger amount of quercetin aglycone (FOQ) have antioxidative activities against AAPH-induced carbon-centered radical, and its activity can present the protective effect against hepatic damage by oxidative stress similar with the ability of ascorbate (vitamin C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Herrmasnn K (1976) Flavonoids and flavones in food plants: a review. J Food Technol 11:433–438

    Article  Google Scholar 

  2. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  CAS  Google Scholar 

  3. Bors W, Heller W, Michel C, Saran M (1990) Methods Enzymol 186:343–355

    CAS  Google Scholar 

  4. Manach C, Texier O, RCgCrat F, Agullo G, Demign C, RCmCsy C (1996) J Nutr Biochem 7:375–380

    Article  CAS  Google Scholar 

  5. Zhang Z, Chang Q, Zhu M, Huang Y, Hoa WKK, Chena ZY (2001) J Nutr Biochem 12:144–152

    Article  CAS  Google Scholar 

  6. Andrea JD, Susan MD, Ridley S, Rhodes M, Rhodes MJC, Morgan MRA, Williamson G (1998) FEBS Lett 436:71–75

    Article  Google Scholar 

  7. Bekhit AED, Geesink GH, Ilian MA, Morton JD, Sedcole JR, Bickerstaffe R (2004) Eur Food Res Technol 218:507–514

    Article  CAS  Google Scholar 

  8. Erlund I (2004) Nutr Res 24:851–874

    Article  CAS  Google Scholar 

  9. Coward L, Barnes NC, Setchell KDR, Barnes S (1993) J Agric Food Chem 41:1961–1967

    Article  CAS  Google Scholar 

  10. Murota K, Mitsukuni Y, Ichikawa M, Tsushida T, Miyamoto S, Terao J (2004) J Agric Food Chem 52:1907–1912

    Article  CAS  Google Scholar 

  11. Sellappan S, Akoh CC (2002) J Agric Food Chem 50:5338–5342

    Article  CAS  Google Scholar 

  12. Rosen GM, Rauckman EJ (1984) Methods Enzymol 105:198–209

    Article  CAS  Google Scholar 

  13. Zhao BL, Li XJ, He R, Cheng SJ, Xin W (1989) J Cell Biophys 14:175–185

    CAS  Google Scholar 

  14. Hiramoto K, Johkoh H, Sako KI, Kikugawa K (1993) Free Radic Res Commun 19:323–332

    Article  CAS  Google Scholar 

  15. National Research Council (1985) National Institutes of Health, Bethesda, no 85-23

  16. American Institute of Nutrition (1977) J Nutr 107:1340–1348

    Google Scholar 

  17. Reitman S, Frankel S (1957) Am J Clinic Pathol 28:56–63

    CAS  Google Scholar 

  18. Ohkawa H, Ohishi N, Yagi K (1979) Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  19. Cohn VH, Lyle JA (1996) Anal Biochem 14:434–440

    Article  Google Scholar 

  20. Worthington DJ, Rosemeyer MA (1976) Eur J Biochem 67:231–238

    Article  CAS  Google Scholar 

  21. Lawrence RA, Burk RF (1976) Biochem Biophys Res Commun 71:952–958

    Article  CAS  Google Scholar 

  22. Beers RF, Sizer IW (1952) J Biol Chem 195:133–140

    CAS  Google Scholar 

  23. Markwell MAK, Hass SN, Dieher DD, Tolbert NE (1978) Anal Biochem 87:206–210

    Article  CAS  Google Scholar 

  24. Terao K, Niki E (1986) Free Radic Biol Med 2:193–201

    Article  CAS  Google Scholar 

  25. Hertog MGL, Hollman PCH, van de Putte B (1992) J Agric Food Chem 40:2379–2383

    Article  CAS  Google Scholar 

  26. Hayek T, Fuhrman B, Vaya J, Rosenblat M, Belinky P, Coleman R, Elis A, Aviram M (1997) Arterioscler Thromb Vasc Biol 17:2744–2752

    CAS  Google Scholar 

  27. Negre-Salvayre A, Salvayre R (1992) Free Radic Biol Med 12:101–106

    Article  CAS  Google Scholar 

  28. DeWhalley CV, Rankin SM, Hoult JR, Jessup W, Leake D (1990) Biochem Pharmacol 39:1743–1750

    Article  CAS  Google Scholar 

  29. Yamamoto N, Moon JH, Tsushida T, Nagao A, Terao J (1999) Arch Biochem Biophys 372:347–354

    Article  CAS  Google Scholar 

  30. Jung WK, Rajapakse N, Kim SK (2005) Eur Food Res Technol 220:535–539

    Article  CAS  Google Scholar 

  31. Frei B (1991) Am J Clin Nutr 54:1113–1118

    Google Scholar 

  32. Frei B, Stocker R, England L, Ames BN (1990) Adv Exp Med Biol 264:155–163

    CAS  Google Scholar 

  33. Yamamoto Y, Niki E, Eguchi J, Kamiya Y, Shimasaki H (1985) Biochim Biophys Acta 819:29–36

    Article  CAS  Google Scholar 

  34. Bailey SM, Landar A, Darley-Usmar V (2005) Free Radic Biol Med 38:175–188

    Article  CAS  Google Scholar 

  35. Goldberg DM, Watts C (1965) Gastroenterology 49:256–261

    CAS  Google Scholar 

  36. Nordmann R (1994) Alcohol Alcohol 29:513–522

    CAS  Google Scholar 

  37. Blake DR, Allen RE, Lunee J (1987) Br Med Bull 43:371–385

    CAS  Google Scholar 

  38. Guerri C, Grisolia S (1980) Adv Exp Med Biol 126:365–374

    CAS  Google Scholar 

  39. Saravanan R, Viswanathan P, Pugalendi KV (2006) Life Sci 78:713–718

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant of the Korea Health 21 R&D Project, Ministry of Health and Welfare, Republic of Korea (project No. A060713)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Ho Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, Y.H., Jung, WK., Jeon, YJ. et al. Protective effects of fermented onion juice containing higher amount of querectin aglycone against oxidative stress by 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH) treatment in Sprague–Dawley rats. Eur Food Res Technol 226, 473–482 (2008). https://doi.org/10.1007/s00217-007-0559-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0559-2

Keywords

Navigation