Skip to main content
Log in

Structure/processing relation of vacuum infused strawberry tissue frozen under different conditions

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Strawberry halves were infused with pectinmethylesterase (PME) and calcium and subsequently frozen by slow, rapid, cryogenic or high-pressure shift freezing (HPSF). A microscopic procedure including detailed image analysis was used to study the effect of vacuum infusion (VI) and/or freezing on the strawberry tissue structure. Hereto, parameters characterizing the size, the shape and/or smoothness of tissue particles were compared for the different samples. It was found that VI seemed to stabilize the cell walls and the cell–cell contact and did not affect the integrity of the strawberry tissue. Structural damage of untreated strawberry tissue due to freezing was large for all freezing methods applied. Rapid and cryogenic freezing conditions were most favorable. VI was effective to minimize the structural damage of rapidly, cryogenically and high-pressure shift frozen strawberries. Infused strawberries frozen by HPSF showed the most smooth and largest particles from all the frozen samples, indicating the importance of both infusion and a high and homogenous degree of undercooling to obtain maximal structure retention of frozen strawberries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Luza JG, van Gorsel R, Polito VS, Kader AA (1992) J Am Soc Hort Sci 117:114–118

    Google Scholar 

  2. Allan-Wojtas PM, Forney CF, Carbyn SE, Nicholas KUKG (2001) Lebensm-Wiss u Technol 34:23–32

    Article  CAS  Google Scholar 

  3. Sousa MB, Canet W, Alvarez MD, Tortosa ME (2005) Eur Food Res Technol 221:132–144

    Article  CAS  Google Scholar 

  4. DelgadoAE, Rubiolo AC (2005) Lebensm-Wiss u Technol 38:135–142

    Article  CAS  Google Scholar 

  5. Suutarinen J, Anäkäinen L, Autio K (1998) Lebensm-Wiss u Technol 31:595–601

    Article  CAS  Google Scholar 

  6. Suutarinen J, Honkapää K, Heiniö RL, Autio K, Mokkila M (2000) Lebensm-Wiss u Technol 33:188–201

    Article  CAS  Google Scholar 

  7. Suutarinen J, Heiska K, Moss P, Autio K (2000) Lebensm-Wiss u Technol 33:89–102

    Article  CAS  Google Scholar 

  8. Suutarinen J, Honkapää K, Heiniö RL, Liukoinen-Lilja H, Mokkila M (2002) J Food Sci 67:1240–1248

    Article  CAS  Google Scholar 

  9. Sousa MB, Canet W, Alvarez MD, Tortosa ME (2005) Eur Food Res Technol (online)

  10. Lewicki PP, Pawlak G (2003) Drying Technol 21:657–683

    Article  Google Scholar 

  11. Roy SS, Taylor TA, Kramer HL (2001) J Food Sci 66:176–180

    Article  CAS  Google Scholar 

  12. Van Buggenhout S, Lille M, Messagie I, Van Loey A, Autio K, Hendrickx M (2006) Eur Food Res Technol 222:543–553

    Article  CAS  Google Scholar 

  13. Kidmose U, Martens HJ (1999) J Sci Food Agric 79:1747–1753

    Article  CAS  Google Scholar 

  14. Shi X, Datta AK (1999) J Thermal Stresses 22:275–292

    Article  Google Scholar 

  15. Partmann W (1975) The effect of freezing and thawing on food quality. In: Duckworth RB (ed) Water relations of foods. Academic, London, pp 505–537

    Google Scholar 

  16. Fuchigami M, Kato N, Teramoto A (1997) J Food Sci 62:804–808

    Article  CAS  Google Scholar 

  17. Fuchigami M, Teramoto A (1997) J Food Sci 62:828–832

    Article  CAS  Google Scholar 

  18. Otero L, Solas MT, Sanz PD, de Elvira C, Carrasco JA (1998) Z Lebensm Unters Forsch A 206:338–342

    Article  CAS  Google Scholar 

  19. Otero L, Martino M, Zaritzky N, Solas M, Sanz PD (2000) J Food Sci 65:466–470

    Article  CAS  Google Scholar 

  20. Giannakourou MC, Taoukis PS (2003) J Food Sci 68:2002–2010

    Article  CAS  Google Scholar 

  21. Maestrelli A, Lo Salzo R, Lupi D, Bertolo G, Torreggiana (2001) J Food Eng 49:255–260

    Article  Google Scholar 

  22. Degraeve P, Saurel R, Coutel Y (2003) J Food Sci 68:716–720

    Article  CAS  Google Scholar 

  23. Van Buggenhout S, Messagie I, Maes V, Duvetter T, Van Loey A, Hendrickx M (2006) Eur Food Res Technol (online)

  24. Duvetter T, Fraeye I, Van Hoang T, Van Buggenhout S, Verlent I, Smout C, Van Loey A, Hendrickx M (2005) J Food Sci 70:S383–S388

    Article  CAS  Google Scholar 

  25. Muntada V, Gerschenson LN, Alzamora SM, Castro MA (1998) J Food Sci 63:616–620

    Article  CAS  Google Scholar 

  26. Saurel R (2002) The use of vacuum technology to improve processed fruit and vegetables. In: Jongen W (ed) Fruit and vegetable processing—improving quality. Woodhead Publishing Ltd, Cambridge, pp 362–380

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by European Project SAFE ICE (QLK1-2002-02230) from the Quality of Life and Management Resources Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hendrickx.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Buggenhout, S., Grauwet, T., Van Loey, A. et al. Structure/processing relation of vacuum infused strawberry tissue frozen under different conditions. Eur Food Res Technol 226, 437–448 (2008). https://doi.org/10.1007/s00217-006-0554-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-006-0554-z

Keywords

Navigation