Skip to main content
Log in

Analysis of organic acid content in cultivars of tomato harvested in Tenerife

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The determination of organic acids in tomato samples was optimized using the HPLC method with on-line photodiode array detection, previous to extraction with 80% ethanol at room temperature and clean-up in Accell Plus QMA cartridge. The organic acids (oxalic, pyruvic, malic, citric, fumaric and ascorbic), Brix degree, acidity and pH were determined in five tomato cultivars (Dorothy, Boludo, Dominique, Thomas and Dunkan) harvested in Tenerife. There are several significant differences among cultivars in the concentration of many acids. The cultivation method, sampling period and the region of production were also considered. Citric, malic and oxalic acids were the major organic acids in all the cultivars. Some significant differences in the studied parameters were observed between the cultivars. The cultivation method and sampling period influenced in a variable way the studied parameters, depending on the tomato cultivar. The production region influenced the ascorbic acid concentration of the tomatoes. Applying stepwise discriminant analysis, it was found that the sampling period is more important in the differentiation of the tomato samples than the cultivar, cultivation method and production region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Thybo AK, Edelenbos M, Christensen LP, Sørensen JN, Thorup-Kristensen (2006) LWT-Food Sci Tech 39:835–843. DOI: 10.1016/j.lwt.2005.09.010

  2. Nielsen S (2003) Food analysis, 3rd edn. Kluwer Academic, New York

    Google Scholar 

  3. Islam S, Matsui T, Yoshida Y (1996) Sci Hortic 65:137–149

    Article  CAS  Google Scholar 

  4. Burton WG, van Es A, Hartmans KJ (1992) The physics and physiology of storage. In: Harris PM (ed) Chapman & Hall, London

  5. Guil JL, Torija ME, Giménez JJ, Rodríguez-García I, Giménez A (1996) J Agric Food Chem 44:1821–1823

    Article  CAS  Google Scholar 

  6. Mitjavila S (1990) Sustancias naturales nocivas en los alimentos. In: Derache J (ed) Toxicología y seguridad de los alimentos. Omega, Barcelona

  7. FAO (2005) Food and Agricultural Organization. Statistics Division. Datos agrícolas de FAOSTAT. Retrieved March 9, 2005 from the World Wide Web: http://www.faostat.fao.org

  8. Gobierno de Canarias (2005) Servicio de Estadística. Retrieved March 9, 2005 from the World Wide Web: http://www.gobcan.es/agricultura/otros/estadistica/default.htm

  9. Hernández M, Rodríguez E, Díaz C (2007) Food Chem (in press). DOI: 10.1016/j.foodchem.2006.11.072

  10. Mato I, Suárez-Luque S, Huidobro J (2005) Food Res Int 38:1175–118. DOI: 10.1016/j.foodres.2005.04.007

    Google Scholar 

  11. Cortocero-Ramírez S, Segura-Cortocero A, Hernáinz-Bermúdez M, Fernández-Gutiérrez A (2005) J Chromatogr A 1064:115–119. DOI: 10.1016/j.chroma.2004.12.029

    Google Scholar 

  12. Roselló S, Galiana-Balaguer L, Herrero-Martínez J, Maquieira A, Nuez F (2002) J Sci Food Agric 82:1101–1106. DOI: 10.1002/jsfa.1153

    Google Scholar 

  13. Castellari M, Versari A, Spinabelli U, Galassi S, Amati A (2000) J Liq Chromatogr Relat Technol 23:2047–2056

    Article  CAS  Google Scholar 

  14. AOAC (1990) Official methods of analysis of AOAC: food composition; additives; natural contaminants, Helrich K (ed), vol II. AOAC, Arlington

  15. Iwase H, Ono I (1998) J Chromatogr A 806:361–364

    Article  CAS  Google Scholar 

  16. Iwase H (2000) J Chromatogr A 881:317–326

    Article  CAS  Google Scholar 

  17. Chinnici F, Spinabelli U, Riponi C, Amati A (2005) J Food Comp Anal 18:121–130. DOI: 10.1016/j.jfca.2004.01.005

    Google Scholar 

  18. Loiudice R, Impembo M, Laratta B, Villari G, Lo Voi A, Siviero P, Castaldo D (1995) Food Chem 53:81–89

    Article  CAS  Google Scholar 

  19. Nollet ML (ed) (1996) Handbook of food analysis. Marcel Dekker, New York

  20. Polenta G, Lucangeli C, Budde C, González CB, Murray R (2006) LWT-Food Sci Tech 39:27–34. DOI: 10.1016/j.lwt.2004.11.003

    Google Scholar 

  21. Osvald J, Petrovič N, Demšar J (2001) Acta Aliment 30:53–61

    Article  CAS  Google Scholar 

  22. Hägg M, Ylikoski S, Kumpulainen J (1994) J Food Comp Anal 7:252–259

    Article  Google Scholar 

  23. Rodríguez J, Ríos D, Rodríguez E, Díaz C (2006) Int J Agric Res (In press)

  24. Knee M, Finger FL (1992) J Am Soc Hortic Sci 117:799–801

    CAS  Google Scholar 

  25. Stuart NT, Efiuvwevwere BJO (1988) J Sci Food Agric 44:309–319

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by the Project (I + D) Reference AGL 2003-09559 of the National Plan for Scientific Research, Development and Technological Innovation, Spain. We also wish to thank the ACETO, Cooperativa de Abona, Cooperativa de Guía de Isora and Cooperativa de Tamaimo for their collaboration in providing the tomatoes. We also gratefully acknowledge the help of Patrick Dennis in revising and checking the English in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Díaz Romero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández Suárez, M., Rodríguez Rodríguez, E. & Díaz Romero, C. Analysis of organic acid content in cultivars of tomato harvested in Tenerife. Eur Food Res Technol 226, 423–435 (2008). https://doi.org/10.1007/s00217-006-0553-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-006-0553-0

Keywords

Navigation