Polyphenols in red pepper [Capsicum annuum var. aviculare (Tepin)] and their protective effect on some pro-oxidants induced lipid peroxidation in brain and liver


Polyphenols exhibit a wide range of biological effects because of their antioxidant properties. The study sought to carry out a comparative studies on the protective ability of free and bound polyphenol extracts of red Capsicum annuum var. aviculare (Tepin) on brain and liver – in vitro. Free polyphenols of red Capsicum annuum var. aviculare (Tepin) were extracted with 80% acetone, while the bound polyphenols were extracted with ethyl acetate from acid and alkaline hydrolysed residue from free polyphenols extract. The phenol content, Fe(II) chelating ability, OH radical scavenging ability and protective ability of the extract against some pro-oxidant (25 μM Fe(II), 7 μM sodium nitroprusside and 1 mM quinolinic acid)-induced lipid peroxidation in brain and liver was subsequently determined. The results of the study revealed that the free polyphenols (218.2 mg/100 g) content of the pepper were significantly higher (P<0.05) than the bound polyphenols (42.5 mg/100 g). Furthermore, the free polyphenol extract had a significantly higher (<0.05) Fe(II) chelating ability, OH radical scavenging ability than the bound polyphenols. In addition, both extracts significantly inhibited (P<0.05) basal and the various pro-oxidant (25 μM Fe(II), 7 μM sodium nitroprusside and 1 mM quinolinic acid)-induced lipid peroxidation in rat's brain and liver in a dose-dependent manner. However, the free polyphenols caused a significantly higher inhibition in the MDA (malondialdehyde) production in the brain and liver homogenates than the bound phenols. In conclusion, Capsicum annuum var. aviculare (Tepin) contains 83.7% free soluble polyphenol and 16.3% bound polyphenols. In addition, both polyphenolic extracts inhibit the various pro-oxidant agents (Fe2+, sodium nitroprusside and quinolinic acid) induced lipid peroxidation in brain and liver tissues in a doe-dependent manner. However, the free polyphenols had higher protective ability than the bound polyphenols. The main mechanism through which they are carry out their protective effect against lipid peroxidation in the brain and the liver is by Fe(II) chelating ability, OH and NO radicals scavenging ability and inhibition of over-stimulation of NMDA receptor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Poli G, Albano E, Dianzani MU (1987) Chem Phys Lipids 45:117–142

    Article  CAS  Google Scholar 

  2. 2.

    Sies H (1985) Oxidative stress, Academic Press, London

    Google Scholar 

  3. 3.

    Hochstein P, Nordenbrand K, Ernster L (1964) Biochem Biophys Res Commun 14:323–328

    Article  CAS  Google Scholar 

  4. 4.

    Benedetti A, Comporti M, Esterbauer H (1980) Biochim Biophys Acta 620:281–296

    CAS  Google Scholar 

  5. 5.

    Johnson S (2001) Med Hypo 57(5):539–543

  6. 6.

    Bates JN, Baker MT, Guerra R, Harrison DG (1990) Biochem Pharm 42:S157–S165

    Article  Google Scholar 

  7. 7.

    Cabrera J, Reiter RJ, Tan D, Qi W, Sainz RM, Mayo JC, Garcia JJ, Kim SJ, El-Sokkary G (2000) Neuropharm 39:507–514

    Article  CAS  Google Scholar 

  8. 8.

    Douglas CJ (1996) Trends Plant Sci 1:171–178

    Article  Google Scholar 

  9. 9.

    Harborne JB, Williams CA (2000) Phytochem 55:481–504

    Article  CAS  Google Scholar 

  10. 10.

    Pitchersky E, Gang DR (2000) Trends Plant Sci 5:459–445

    Google Scholar 

  11. 11.

    Bors W, Heller W, Michel C, Stettmaier K (1996) Handb Antioxid 409–466

  12. 12.

    Halliwell B (1996) Annu Rev Nutr 16:39–50

    Article  Google Scholar 

  13. 13.

    Rice-Evans C, Miller NJ, Paganga G (1996) Free Rad Biol Med 20:933–956

    Article  CAS  Google Scholar 

  14. 14.

    Rice-Evans CA, Miller J, Paganga G (1997) Trends Plant Sci 2:152–159

    Article  Google Scholar 

  15. 15.

    Elmegeed GA, Ahmed HA, Hussein JS (2005) Eur J Med Chem 40(12):1283–1294

    Google Scholar 

  16. 16.

    Hollman PCH, Katan MB (1999) Food Chem Toxicol 37:937–942

    Article  CAS  Google Scholar 

  17. 17.

    Burda S, Oleszek W (2001) Food Chem 49:2774–2779

    CAS  Google Scholar 

  18. 18.

    McGinnnis JM, Foege WHJ (1993) Amer Med Assoc 270:2207–2212

    Article  Google Scholar 

  19. 19.

    Bronner YL (1996) J Am Diet Assoc 96:891–903

    Article  CAS  Google Scholar 

  20. 20.

    Munoz CM, Chavez A (1998) Int J Cancer 11(Ssuppl):85–89

    Article  Google Scholar 

  21. 21.

    Gillman MW, Cupples LA, Gagnon D, Posner BM, Ellison RC, Castelli WP, Wolf PA (1995) J Am Med Assoc 273:1113–1117

    Article  CAS  Google Scholar 

  22. 22.

    Joshipura KJ, Ascherio A, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, Hennekens CH, Spiegelman D, Willett WC (1999) J Am Med Assoc 282:1233–1239

    Article  CAS  Google Scholar 

  23. 23.

    Cox BD, Whichelow MJ, Prevost AT (2002) Public Health Nutr 3:19–29

    Google Scholar 

  24. 24.

    Strandhagen E, Hansson PO, Bosaeus I, Isaksson B, Eriksson H (2000) Eur J Clin Nutr 54:337–341

    Article  CAS  Google Scholar 

  25. 25.

    Sosulski F, Krygier K, Hogge L (1982) J Agric Food Chem 30:337–340

    Article  CAS  Google Scholar 

  26. 26.

    Oboh G, Puntel RL, Rocha JBT (2005) Hot pepper (Capsicum annuum, Tepin & Capsicum Chinese, Habanero) Prevents Fe2+-induced Lipid Peroxidation in Brain – in vitro. A report submitted to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil

  27. 27.

    Chu Y, Sun J, Wu X, Liu RH (2002) J Agric Food Chem 50:6910–6916

    Article  CAS  Google Scholar 

  28. 28.

    Belle NAV, Dalmolin GD, Fonini G, Rubim MA, Rocha JBT (2004) Brain Res 1008:245–251

    Article  CAS  Google Scholar 

  29. 29.

    Ohkawa H, Ohishi N, Yagi K (1979) Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  30. 30.

    Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Method Enzym 299:152–178

    CAS  Article  Google Scholar 

  31. 31.

    Minotti G, Aust SD (1987) Free Rad Biol Med 3:379–387

    Article  CAS  Google Scholar 

  32. 32.

    Puntel RL, Nogueira CW, Rocha JBT (2005) Neurochem Res 30(2):225–235

    Article  CAS  Google Scholar 

  33. 33.

    Halliwell B, Gutteridge JMC (1981) FEBS Lett 128:347–352

    Article  CAS  Google Scholar 

  34. 34.

    Zar JH (1984) Biostatistical analysis, Prentice-Hall, Inc., USA

    Google Scholar 

  35. 35.

    Sun J, Chu Y, Wu X, Liu R (2002) J Agric Food Chem 50:7449–7454

    Article  CAS  Google Scholar 

  36. 36.

    Voorrips LE, Goldbohm RA, van Poppel G, Sturmans F, Hermus RJJ, van den Brandt PA (2000) Am J Epidemiol 152:1081–1092

    Article  CAS  Google Scholar 

  37. 37.

    Amic D, Davidovic-Amic D, Beslo D, Trinajstic N (2003) Croat Chem Act 76(1):55–61

    CAS  Google Scholar 

  38. 38.

    Alia M, Horcajo C, Bravo L, Goya L (2003) Nutr Res 23:1251–1267

    Article  CAS  Google Scholar 

  39. 39.

    Perry SW, Norman JP, Litzburg A, Gelbard HA (2004) J Neur Res 78(4):485–492

    Article  CAS  Google Scholar 

  40. 40.

    Oboh G (2006) Eur Food Res Technol (in press)

  41. 41.

    Harris ML, Shiller HJ, Reilly PM, Donowitz M, Grisham MB, Bulkley GB (1992) Pharm Therap 53:375–408

    Article  CAS  Google Scholar 

  42. 42.

    Fraga CG, Oteiza PI (2002) Toxicology 80:23–32

    Article  Google Scholar 

Download references


The authors wish to acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Brazil and Academy of Science for the Developing World (TWAS), Trieste Italy; for granting Dr. G. Oboh, Post-Doctoral fellowship tenable at Biochemical Toxicology Unit of the Department of Chemistry, Federal University of Santa Maria, Brazil. This study was also supported by CAPES, FIPE/UFSM, VITAE Foundation and FAPERGS. In addition, the authors apppreciate the support of The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy. Financial support from the Swedish International Development Cooperation Agency is acknowledged.

Author information



Corresponding author

Correspondence to Ganiyu Oboh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oboh, G., Rocha, J. Polyphenols in red pepper [Capsicum annuum var. aviculare (Tepin)] and their protective effect on some pro-oxidants induced lipid peroxidation in brain and liver. Eur Food Res Technol 225, 239–247 (2007). https://doi.org/10.1007/s00217-006-0410-1

Download citation


  • Polyphenols
  • Capsicum annuum var. aviculare (Tepin)
  • Fe(II)
  • Lipid peroxidation