European Food Research and Technology

, Volume 224, Issue 5, pp 535–543 | Cite as

Identification of organically farmed Atlantic salmon by analysis of stable isotopes and fatty acids

  • Joachim Molkentin
  • Hans Meisel
  • Ines Lehmann
  • Hartmut Rehbein
Original Paper


Using isotope ratio mass spectrometry (IRMS), the ratios of carbon (δ13C) and nitrogen (δ15N) stable isotopes were investigated in raw fillets of differently grown Atlantic salmon (Salmo salar) in order to develop a method for the identification of organically farmed salmon. IRMS allowed to distinguish organically farmed salmon (OS) from wild salmon (WS), with δ15N-values being higher in OS, but not from conventionally farmed salmon (CS). The gas chromatographic analysis of fatty acids differentiated WS from CS by stearic acid as well as WS from CS and OS by either linoleic acid or α-linolenic acid, but not OS from CS. The combined data were subjected to analysis using an artificial neural network (ANN). The ANN yielded several combinations of input data that allowed to assign all 100 samples from Ireland and Norway correctly to the three different classes. Although the complete assignment could already be achieved using fatty acid data only, it appeared to be more robust with a combination of fatty acid and IRMS data, i.e. with two independent analytical methods. This is also favourable with respect to a possible manipulation using suitable feed components. A good differentiation was established even without an ANN by the δ15N-value and the content of linoleic acid. The general applicability in the context of consumer protection should be checked with further samples, particularly regarding the variability of feed composition and possible changes in smoked salmon.


Stable isotopes Fatty acids Identification Organically farmed salmon Conventionally farmed salmon Wild salmon Artificial neural network 


  1. 1.
    Aursand M, Mabon F, Martin G (2000) J Am Oil Chem Soc 77:659–666CrossRefGoogle Scholar
  2. 2.
    Dempson JB, Power M (2004) Ecol Freshwater Fish 13:176–184CrossRefGoogle Scholar
  3. 3.
    Ostermeyer U, Schmidt T (2004) Deutsche Lebensmittel-Rundschau 100:437–444Google Scholar
  4. 4.
    IFOAM (2002) Norms for organic production and processing.
  5. 5.
    KRAV (2005) Standards for KRAV certified production.
  6. 6.
    Soil Association (2004) Fish farming and organic standards.
  7. 7.
    Naturland (2005) Naturland Richtlinien für die ökologische Aquakultur.
  8. 8.
    Polvi SM, Ackman RG (1992) J Agric Food Chem 40:1001–1007CrossRefGoogle Scholar
  9. 9.
    Torstensen BE, Lie O, Froyland L (2000) Lipids 35:653–664CrossRefGoogle Scholar
  10. 10.
    Bell JG, McEvoy J, Tocher DR, McGhee F, Campbell PJ, Sargent JR (2001) J Nutr 131:1535–1543Google Scholar
  11. 11.
    Bell JG, Henderson RJ, Tocher DR, McGhee F, Dick JR, Porter A, Smullen RP, Sargent JR (2002) J Nutr 132:222–230Google Scholar
  12. 12.
    Hamilton MC, Hites RA, Schwager SJ, Foran JA, Knuth BA, Carpenter DO (2005) Environ Sci Technol 39:8622–8629CrossRefGoogle Scholar
  13. 13.
    Rossmann A (2001) Food Rev Int 17:347–381CrossRefGoogle Scholar
  14. 14.
    DeNiro MJ, Epstein S (1978) Geochim Cosmochim Acta 42:495–506CrossRefGoogle Scholar
  15. 15.
    DeNiro MJ, Epstein S (1981) Geochim Cosmochim Acta 45:341–351CrossRefGoogle Scholar
  16. 16.
    Peterson BJ, Fry B (1987) Annu Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  17. 17.
    O'Leary MH (1981) Phytochemistry 20:553–567CrossRefGoogle Scholar
  18. 18.
    Fry B, Sherr EB (1989) In: Rundel PW, Ehleringer JR, Nazy KA (eds) Stable isotopes in ecological research. Springer, Berlin Heidelberg New York, pp 196–229Google Scholar
  19. 19.
    Minagawa M, Wada E (1984) Geochim Cosmochim Acta 48:1135–1140CrossRefGoogle Scholar
  20. 20.
    Yoneyama T, Kouno K, Yazaka J (1990) Soil Sci Plant Nutr 36:667–675Google Scholar
  21. 21.
    Kennedy BP, Chamberlain CP, Blum JD, Nislow KH, Folt CL (2005) Can J Fish Aquat Sci 62:48–57CrossRefGoogle Scholar
  22. 22.
    Hoefs J (2004) Stable isotope geochemistry, 5th edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  23. 23.
    Rossmann A, Kornexl B, Versini G, Pichlmayer F, Lamprecht G (1998) Riv Sci Alim 27:9–21Google Scholar
  24. 24.
    Manca G, Camin F, Coloru GC, Del Caro A, Depentori D, Franco MA, Versini G (2001) J Agric Food Chem 49:1404–1409CrossRefGoogle Scholar
  25. 25.
    Pillonel L, Badertscher R, Froidevaux P, Haberhauer G, Hölzl S, Horn P, Jakob A, Pfammatter E, Piantini U, Rossmann A, Tabacchi R, Bosset JO (2003) Lebensm Wiss Technol 36:615–623CrossRefGoogle Scholar
  26. 26.
    Zupan J, Gasteiger J (1993) Neural networks for chemists. VCH, Weinheim, pp 3–294Google Scholar
  27. 27.
    Meisel H, Lorenzen PC, Martin D, Schlimme E (1997) Nahrung/Food 41:75–80CrossRefGoogle Scholar
  28. 28.
    Smedes F (1999) Analyst 124:1711–1718CrossRefGoogle Scholar
  29. 29.
    DGF-Einheitsmethode C-VI-11d (1998) Fettsäuremethylester (Alkalische Umesterung). Wissenschaftliche Verlagsgesellschaft mbH, StuttgartGoogle Scholar
  30. 30.
    DGF-Einheitsmethode C-VI-10a (2000) Gaschromatographie: Analyse der Fettsäuren und Fettsäureverteilung. Wissenschaftliche Verlagsgesellschaft mbH, StuttgartGoogle Scholar
  31. 31.
    Principe JC, Euliano NR, Lefebvre WC (2000) Neural and adaptive systems: fundamentals through simulation. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Joachim Molkentin
    • 1
  • Hans Meisel
    • 1
  • Ines Lehmann
    • 2
  • Hartmut Rehbein
    • 2
  1. 1.Institute of Dairy Chemistry and TechnologyFederal Research Centre for Nutrition and FoodKielGermany
  2. 2.Department of Fish QualityFederal Research Centre for Nutrition and FoodHamburgGermany

Personalised recommendations