Skip to main content
Log in

New potato fibre for improvement of texture and colour of wheat bread

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The aim of this project was to compare the functional properties of five fibre fractions by baking of wheat bread by substitution 0, 4, 8 and 12 w/w% of wheat flour using dry potato pulp (Fibre 1), a commercial potato fibre (Fibre 2), two fibre prepared from potato pulp by enzymatic hydrolysis (Fibre 3 and 4), and one solubilised fibre (Fibre 5). The effect of chemical composition of fibre on texture, colour, specific weight and volume of wheat bread was studied using objective methods for measurement of texture characteristics, colour (L, a, b) and sensory analysis. Dry potato pulp, Potex (Fibre 2) and two enzymatically prepared fibre powders (Fibre 3 and 4) with a high concentration of lignin and insoluble non-starch polysaccharides (INCP) had a detrimental effect on bread quality by substitution of more than 8% of the wheat flour by fibre. The detrimental effect was mainly due to increased hardness, deformation energy, modulus and gumminess. Multiple linear regression analysis with forward selection was used for determination of the relationship between quality characteristics and of soluble non-starch polysaccharides (SNSP), insoluble non-starch polysaccharides (INCP), cellulose and lignin. The enzymatic solubilised fibre (Fibre 5) with a high concentration of soluble fibre and a low concentration of cellulose and lignin could be used for substitution of at least 12% wheat flour for baking of bread with an attractive colour, delicious texture and flavour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pomeranz Y, Shogren MD, Finney KF, Bechtel DB (1977) Cereal Chem 54:25–41

    Google Scholar 

  2. Shogren MD, Pomeranz Y, Finney KF (1981) Cereal Chem 58:142–144

    CAS  Google Scholar 

  3. Moder GJ, Finney KF, Bruinsma BL, Ponte JG Jr, Bolte LC (1984) Cereal Chem 61:269–273

    Google Scholar 

  4. Anderson JW, Riddell-Mason S, Gustafson NJ, Smith SF, Mackey M (1992) Am J Clin Nutr 56:93–98

    PubMed  CAS  Google Scholar 

  5. Anderson JW, Story L, Sieling B, Chen WJ, Petro MS, Story J (1984) Am J Clin Nutr 40:1146–1155

    PubMed  CAS  Google Scholar 

  6. Jenkins DJ, Jenkins AL, Wolever TM, Vuksan V, Rao AV, Thompson LU, Josse RG (1995) Eur J Clin Nutr 49(Suppl 3):S68–S73

    PubMed  Google Scholar 

  7. Wolever TM, Bentum-Williams A, Jenkins DJ (1995) Diabetes Care 18:962–970

    PubMed  CAS  Google Scholar 

  8. Tavani A, Bosetti C, Negri E, Augustin LS, Jenkins DJ, la Vecchia C (2003) Heart 89:722–726

    Article  PubMed  CAS  Google Scholar 

  9. Savaiano DA, Story JA (2000) Nutr Rev 58:356–358

    Article  PubMed  CAS  Google Scholar 

  10. Giacco R, Clemente G, Riccardi G (2002) Dig Liver Dis 34(Suppl 2):S140–S144

    Article  PubMed  Google Scholar 

  11. Jenkins DJ, Kendall CW, Vuksan V, Vidgen E, Parker T, Faulkner D, Mehling CC, Garsetti M, Testolin G, Cunnane SC, Ryan MA, Corey PN (2002) Am J Clin Nutr 75:834–839

    PubMed  CAS  Google Scholar 

  12. Orr PH, Toma RB, Munson ST, D’Appolonia B (1982) Am Potato J 59:605–611

    Google Scholar 

  13. Schweizer TF, Wursch P (1991) Experientia 47:181–186

    Article  PubMed  CAS  Google Scholar 

  14. Toma RB, Orr PH, D’Appolonia B, Dintzis FR, Tabekhia MM (1979) J Food Sci 44:1403–1407

    Article  CAS  Google Scholar 

  15. Nebesny E (1995) Starch/Staerke 47:36–39

    Article  CAS  Google Scholar 

  16. Camire ME, Violette D, Dougherty MP, McLaughlin MA (1997) J Agric Food Chem 45:1404–1408

    Article  CAS  Google Scholar 

  17. Klingspohn U, Bader J, Kruse B, Vijai-Kishore P, Schuegerl K, Kracke-Helm HA, Likidis Z (1993) Process Biochem 28:91–98

    Article  CAS  Google Scholar 

  18. Gan Z, Galliard T, Ellis PR, Angold RE, Vaughan JG (1992) J Cereal Sci 15:151–163

    Google Scholar 

  19. Park H, Seib PA, Chung OK (1997) Cereal Chem 74:207–211

    CAS  Google Scholar 

  20. Laurikainen T, Harkonen H, Autio K, Poutanen K (1998) J Sci Food Agric 76:239–249

    Article  CAS  Google Scholar 

  21. Jinshui W, Rosell CM, Benedito-de-Barber C (2002) Food Chem 79:221–226

    Article  Google Scholar 

  22. -ter Haseborg E, Himmelstein A (1988) Cereal Foods World 38:419–421

    Google Scholar 

  23. Maeda T, Morita N (2003) Food Res Int 36:603–610

    Article  CAS  Google Scholar 

  24. Jelaca SL, Hlynka I (1971) Cereal Chem 48:211–222

    CAS  Google Scholar 

  25. Dubois DK (1978) Bakers Dig 52:30–33

    Google Scholar 

  26. Lai CS, Hoseney RC, Davis AB (1989) Cereal Chem 66:217–219

    Google Scholar 

  27. Galliard T, Gallagher DM, Rosell CM, Rojas JA, Benedito-de-Barber C (1988) J Cereal Sci 8:147–154

    Article  Google Scholar 

  28. Knuckles BE, Hudson CA, Chiu MM, Sayre RN (1997) Cereal Foods World 42:94–96

    Google Scholar 

  29. O’Brien CM, Mueller A, Scannell A-GM, Arendt EK (2003) J Food Eng 56(2/3):265–267

    Article  Google Scholar 

  30. Olesen M, Gudmand-Hoyer E, Norsker M, Kofod L, Adler-Nissen J (1998) Eur J Clin Nutr 52:110–114

    Article  PubMed  CAS  Google Scholar 

  31. Theander O, Aman P, Westerlund E, Andersson R, Pettersson D (1995) J AOAC Jnt 78:1033–1044

    Google Scholar 

  32. Renard C-MG-C, Thibault JF (1991) Lebensm Wiss Technol 24:523–527

    CAS  Google Scholar 

  33. Segnini S, Pedreschi F, Dejmek P (2004) Int J Food Prop 7:37–44

    Article  Google Scholar 

  34. Englyst H, Wiggins HS, Cummings JH (1982) Analyst 107:307–318

    Article  PubMed  CAS  Google Scholar 

  35. Knudsen K-EB (1997) Anim Feed Sci Technol 67:319–338

    Article  Google Scholar 

  36. Bourne MC (1978) Food Technol 32:62–72

    Google Scholar 

  37. Ûberla K (1971) Faktorenanalyse. Springer-Verlag, New York

  38. Sharma S (1996) Applied multivariate techniques. Wiley, New York

  39. Prosky L, Asp NG, Schweizer TF, DeVries JW, Furda I, Lee SC (1994) J AOAC Int 77:690–694

    PubMed  CAS  Google Scholar 

  40. Ranhotra G, Gelroth J (1988) Cereal Chem 65:155–156

    Google Scholar 

  41. Dongowski G (1993) Starch/Staerke 45:166–171

    Article  CAS  Google Scholar 

  42. Camire ME, Flint SI (1991) Cereal Chem 68:645–647

    Google Scholar 

  43. Arora A, Jianxin Z, Camire ME (1993) J Food Sci 58:335–337

    Article  Google Scholar 

  44. Cadden AM (1987) J Food Sci 52:1595–1599

    Article  Google Scholar 

  45. Sosulski FW, Wu KK (1988) Cereal Chem 65(3):186–191

    Google Scholar 

  46. Chen JY, Piva M, Labuza TP (1984) J Food Sci 48:50–63

    Google Scholar 

  47. D’Appolonia BL, Prentice N (1978) J Food Sci 44:1403–1407

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Kaack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaack, K., Pedersen, L., Laerke, H.N. et al. New potato fibre for improvement of texture and colour of wheat bread. Eur Food Res Technol 224, 199–207 (2006). https://doi.org/10.1007/s00217-006-0301-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-006-0301-5

Keywords

Navigation